Two delay-coupled semiconductor lasers are studied in the regime where the coupling delay is comparable to the time scales of the internal laser oscillations. Detuning the optical frequency between the two lasers, novel delay-induced scenarios leading from optical frequency locking to successive states of periodic intensity pulsations are observed. We demonstrate and analyze these dynamical phenomena experimentally using two distinct laser configurations. A theoretical treatment reveals the universal character of our findings for delay-coupled systems.
A subcritical Hopf bifurcation is prepared in a multisection semiconductor laser. In the free-running state, hysteresis is absent due to noise-induced escape processes. The missing branches are recovered by stabilizing them against noise through application of phase-sensitive noninvasive delayed optical feedback control. The same type of control is successfully used to stabilize the unstable pulsations born in the Hopf bifurcation. This experimental finding represents an optical counterexample to the so-called odd-number limitation of delayed feedback control. However, as a leftover of the limitation, the domains of control are extremely small.
We demonstrate experimentally control of a chaotic system on time scales much shorter than in any previous study. Combining a multisection laser with an external Fabry-Perot etalon, the chaotic output transforms into a regular intensity self-pulsation with a frequency in the 10-GHz range. The control is noninvasive as the feedback from the etalon is minimum when the target state is reached. The optical phase is identified as a crucial control parameter. Numerical simulations agree well with the experimental data and uncover global control properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.