The Internet of vehicles (IoV) is an important part of mobile communication system with the development of Internet of things (IoT). A novel multiband automobile antenna is proposed, which can cover all frequency bands for the long-term evolution (LTE), the 5th generation wireless systems (5G), the wireless local area network (WLAN) and the dedicated short-range communication (DSRC) (from 690 MHz to 944 MHz and from 1.46 GHz to 6 GHz). The antenna is designed based on the monopole antenna, and the impedance matching performance of the antenna is improved by loading the toothed capacitor and the impedance matching disc. The simulation results show that the automobile antenna achieves good impedance matching in the working bandwidth and obtains omnidirectional radiation pattern in the horizontal direction. The electric field distribution of the antenna placed on the vehicle roof is simulated to evaluate the network performance of the antenna system in the urban environment. The transmission coefficient of the transceiver system using the automobile antenna is also analyzed based on the electromagnetic simulation results and statistical model. The blind area of mobile communication system is effectively covered with the automobile antenna, which could be used to connect the LTE cell and the IoV system.
The Internet of vehicles (IoV) is an important part of mobile communication system with the development of Internet of things. A novel multiband automobile antenna is proposed, which can cover all frequency bands for the long-term evolution (LTE), the fifth generation wireless systems (5G), the wireless local area network and the dedicated short-range communication (from 690 to 944 MHz and from 1.46 to 6 GHz). The antenna is designed based on the monopole antenna, and the impedance matching performance of the antenna is improved by loading the toothed capacitor and the impedance matching disk. The simulation results show that the automobile antenna achieves good impedance matching in the working bandwidth and obtains omnidirectional radiation pattern in the horizontal direction. The electric field distribution of the antenna placed on the vehicle roof is simulated to evaluate the network performance of the antenna system in the urban environment. The transmission coefficient of the transceiver system using the automobile antenna is also analyzed based on the electromagnetic simulation results and statistical model. The blind area of mobile communication system is effectively covered with the automobile antenna, which could be used to connect the LTE cell and the IoV system.
This paper presents a high gain dielectric resonance antenna (DRA) array for vehicular wireless communication and 5G system in millimeter wave band, which takes the advantage of low side lobe level (SLL). The planar antenna array is composed of 8 × 8 rectangular DRA elements, whose operation mode is the fundamental mode TE 111 . The beamforming weights of the array are designed based on the principle of Dolph-Chebyshev distribution to suppress the antenna SLL. The planar array consists of 8 linear sub-arrays, which are fed with standing-wave series resonance method respectively. The excitations of sub-array elements are precisely adjusted based on the aperture coupling model. Furthermore, the series-parallel hybrid feed network and parallel-cascaded feed network are applied to unequally feed the sub-arrays in accordance with Chebyshev polynomials. The measurement results of prototype validate the design solution of antenna array. The impedance bandwidth is 570 for reflection coefficients less than −10 dB, and the antenna gain and SLL are 20.5 ± 1 dBi and 20 dB, respectively. Due to the advantages of miniaturization and narrow beam, the proposed DRA antenna array is adequate for vehicle communication equipment.
The uplink and downlink of modern satellite communication systems operate on different frequency bands. A novel dual-band dual circular polarization filter antenna with a single port is proposed in this paper. The dual-band characteristic of the antenna is obtained by exciting stacked patches. The antenna supports right-handed circular polarization (RHCP) at lower frequency band and left-handed circular polarization (LHCP) at higher frequency band, respectively. The feeding network is realized with a strip line, and the antenna can be equivalent to a parallel circuit. If the lower frequency patch works, the higher frequency patch presents high impedance, and vice versa. Therefore, the antenna has excellent filtering performance. The measurements of antenna prototype are in good agreement with the simulation results. The impedance bandwidth is 5.80-6.10 GHz and 9.20-10.64 GHz, and the axial ratio (AR) bandwidth is 40 MHz for lower band and 180 MHz for higher band, respectively. Meanwhile, the radiation pattern is stable in the operation frequency bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.