BackgroundDnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920), AtJ11 (At4 g36040) and AtJ20 (At4 g13830), was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS) II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed.ResultsKnockout of one of these proteins caused a series of events including a decrease in photosynthetic efficiency, destabilization of PSII complexes and loss of control for balancing the redox reactions in chloroplasts. Data obtained with DNA microarray analysis demonstrated that the lack of one of these DnaJ proteins triggers a global stress response and therefore confers the plants greater tolerance to oxidative stress induced by high light or methyl viologen treatments. Expression of a set of genes encoding enzymes that detoxify reactive oxygen species (ROS) as well as a number of stress-related transcription factors behaved in the mutants at growth light similarly to that when wild-type (WT) plants were transferred to high light. Also a set of genes related to redox regulation were upregulated in the mutants. On the other hand, although the three DnaJ proteins reside in chloroplasts, the expression of most genes encoding thylakoid membrane proteins was not changed in the mutants.ConclusionIt is proposed that the tolerance of the DnaJ protein knockout plants to oxidative stress occurs at the expense of the flexibility of photosynthetic reactions. Despite the fact that the effects of the individual protein knockout on the response of plants to high light treatment are quite similar, it is conceivable that both specific- and cross-talk functions exist between the three small chloroplast-targeted DnaJ proteins, AtJ8, AtJ11 and AtJ20.
Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.
Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.
Cyanobacteria have a tremendous activity to adapt to environmental changes of their growth conditions. In this study, Synechocystis sp. PCC 6803 was used as a model organism to focus on the alternatives of cyanobacterial energy metabolism. Glucose oxidation in Synechocystis sp. PCC6803 was studied by inactivation of slr1843, encoding glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the oxidative pentose phosphate pathway (OPPP). The resulting zwf strain was not capable of glucose supported heterotrophic growth. Growth under autotrophy and under mixotrophy was similar to that of the wild-type strain, even though oxygen evolution and uptake rates of the mutant were decreased in the presence of glucose. The organic acids citrate and succinate supported photoheterotrophic growth of both WT and zwf. Proteome analysis of soluble and membrane fractions allowed identification of four growth condition-dependent proteins, pentose-5-phosphate 3-epimerase (slr1622), inorganic pyrophosphatase (sll0807), hypothetical protein (slr2032) and ammonium/methylammonium permease (sll0108) revealing details of maintenance of the cellular carbon/nitrogen/phosphate balance under different modes of growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.