The internet of things (IoT) has allowed for ubiquitous measurement. Infant incubator temperature is one of crucial parts that need to be measured, especially for the stability and uniformity temperature. Based on the interpretation of IEC 60601-2-19, we proposed measurement method using IoT with the message queue telemetry transport (MQTT). In the 10,000 packet, the result shows the quality of service (QoS) level 2 of the system has the highest delay, however it has the lowest packet loss data than the other QoS. For 1 hour, the uniformity result and stability can fulfill the standards. Uniformity of 32°C, the lowest difference is point C with 0.32 °C, and the highest difference is point B with 0.75 °C. Uniformity of 36 °C, the lowest difference is point B with 0.27 °C, and the highest difference is point C with 0.79 °C. The stability of 32 °C and 36 °C is 0.32 °C and 0.44 °C, respectively. Moreover, the Kruskal Wallis test shows the highest difference average from point M is point A and B. It occurred because of the point A and B located far from the heater part, so the point A and B colder than point C.
Saat ini, deteksi dini kanker paru-paru dapat dilakukan dengan sistem Computer Aided Diagnosis (CAD) berbasis AI. Oleh karena itu, peningkatan perfoma sistem CAD sangat diperlukan. Dalam studi ini, berbagai teknik pengolahan citra dan augmentasi data diterapkan untuk mengevaluasi performa deteksi nodul paru-paru pada citra X-Ray dada dengan algoritma YOLOv5. Dataset publik yang terdiri dari 1500 data latih dan 516 data uji beserta dengan anotasi nodulnya digunakan dalam simulasi. Hasil simulasi menunjukkan bahwa model YOLOv5 menghasilkan presisi, recall, dan nilai mAP yang tinggi dengan nilai masing-masing 0,811, 0,776, dan 0,858, walaupun tidak menggunakan teknik pengolahan citra dan augmentasi data. Hasil validasi silang dengan dengan dataset publik JSRT dengan augmentasi data tiga kali menunjukkan bahwa YOLOv5s memiliki performa yang lebih baik untuk deteksi nodul pada paru-paru dibandingkan variasi model YOLOv5s lainnya, dengan nilai presisi 0,719 dan nilai recall 0,630.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.