Human joint moment plays an important role in quantitative rehabilitation assessment and exoskeleton robot control. However, the existing moment prediction methods require kinematic and kinetic data of human body as input, and the measurement of them needs special equipment, which makes them unable to be used in an unconstrained environment. According to the situation, this paper develops a novel method where a small number of input variables selected by Elastic Net are used as the input of artificial neural network (ANN) to predict joint moments, which makes the prediction in daily life possible. The method is tested on the experimental data collected from eight healthy subjects that are running on a treadmill at a speed of 2, 3, 4, and 5 m/s, respectively. Taking the right lower limb's 10 electromyography (EMG) and 5 joints angle data as candidate variable sets, Elastic Net is used to obtain the variable coefficients of the right lower limb's four joint moments. The inputs of the ANN determined by the variable coefficients are used to train and predict the joint moments. Prediction accuracy is evaluated by using the normalized root-meansquare error (NRMSE %) and cross correlation coefficient (ρ) between the predicted joint moment and multibody dynamics moment. Results of our study suggest that the method can accurately predict joint moment (NRMSE < 7.89%, ρ > 0.9633) with only 5-6 EMG signals. In conclusion, this method can effectively reduce the input variables while keeping a certain precision, which makes the joint moment prediction simple and out of equipment limitation. This method may facilitate the researches on real-time gait analysis and exoskeleton robot control in motor rehabilitation. INDEX TERMS Joint moment prediction, artificial neural network, elastic net.
Introduction: Human joint moment is a critical parameter to rehabilitation assessment and human-robot interaction, which can be predicted using an artificial neural network (ANN) model. However, challenge remains as lack of an effective approach to determining the input variables for the ANN model in joint moment prediction, which determines the number of input sensors and the complexity of prediction. Methods: To address this research gap, this study develops a mathematical model based on the Hill muscle model to determining the online input variables of the ANN for the prediction of joint moments. In this method, the muscle activation, muscle-tendon moment velocity and length in the Hill muscle model and muscle-tendon moment arm are translated to the online measurable variables, i.e., muscle electromyography (EMG), joint angles and angular velocities of the muscle span. To test the predictive ability of these input variables, an ANN model is designed and trained to predict joint moments. The ANN model with the online measurable input variables is tested on the experimental data collected from ten healthy subjects running with the speeds of 2, 3, 4 and 5 m/s on a treadmill. The variance accounted for (VAF) between the predicted and inverse dynamics moment is used to evaluate the prediction accuracy. Results: The results suggested that the method can predict joint moments with a higher accuracy (mean VAF = 89.67±5.56 %) than those obtained by using other joint angles and angular velocities as inputs (mean VAF = 86.27±6.6%) evaluated by jack-knife cross-validation. Conclusions: The proposed method provides us with a powerful tool to predict joint moment based on online measurable variables, which establishes the theoretical basis for optimizing the input sensors and detection complexity of the prediction system. It may facilitate the research on exoskeleton robot control and real-time gait analysis in motor rehabilitation.
Joint moment is an important parameter for a quantitative assessment of human motor function. However, most existing joint moment prediction methods lacking feature selection of optimal inputs subset, which reduced the prediction accuracy and output comprehensibility, increased the complexity of the input sensor structure, making the portable prediction equipment impossible to achieve. To address this problem, this paper develops a novel method based on the binary particle swarm optimization (BPSO) with the variance accounted for (VAF) as fitness function to reduce the number of input variables while improves the accuracy in joint moment prediction. The proposed method is tested on the experimental data collected from ten healthy subjects who are running on a treadmill with four different speeds of 2, 3, 4 and 5m/s. The BPSO is used to select optimal inputs subset from ten electromyography (EMG) data and six joints angles, and then the selected optimal inputs subset be used to train and predict the joint moments via artificial neural network (ANN). Prediction accuracy is evaluated by the variance accounted for (VAF) test between the predicted joint moment and multi-body dynamics moment. Results show that the proposed method can reduce the number of input variables of five joint moment from 16 to less than 11. Furthermore, the proposed method can better predict joint moment (mean VAF: 94.40±0.84%) in comparison with the state-of-the-art methods, i.e. Elastic Net (mean VAF: 93.38±0.96%) and mutual information (mean VAF: 86.27±1.41%). In conclusion, the proposed method reduces the number of input variables and improves the prediction accuracy that may allow the future development of a portable, non-invasive system for joint moment prediction. As such, it may facilitate real-time assessment of human motor function. INDEX TERMS Joint moment prediction, artificial neural network, binary particle swarm optimization, feature selection.
Early accurate diagnosis of patellofemoral pain syndrome (PFPS) is important to prevent the further development of the disease. However, traditional diagnostic methods for PFPS mostly rely on the subjective experience of doctors and subjective feelings of the patient, which do not have an accurate-unified standard, and the clinical accuracy is not high. With the development of artificial intelligence technology, artificial neural networks are increasingly applied in medical treatment to assist doctors in diagnosis, but selecting a suitable neural network model must be considered. In this paper, an intelligent diagnostic method for PFPS was proposed on the basis of a one-dimensional convolutional neural network (1D CNN), which used surface electromyography (sEMG) signals and lower limb joint angles as inputs, and discussed the model from three aspects, namely, accuracy, interpretability, and practicability. This article utilized the running and walking data of 41 subjects at their selected speed, including 26 PFPS patients (16 females and 10 males) and 16 painless controls (8 females and 7 males). In the proposed method, the knee flexion angle, hip flexion angle, ankle dorsiflexion angle, and sEMG signals of the seven muscles around the knee of three different data sets (walking data set, running data set, and walking and running mixed data set) were used as input of the 1D CNN. Focal loss function was introduced to the network to solve the problem of imbalance between positive and negative samples in the data set and make the network focus on learning the difficult-to-predict samples. Meanwhile, the attention mechanism was added to the network to observe the dimension feature that the network pays more attention to, thereby increasing the interpretability of the model. Finally, the depth features extracted by 1D CNN were combined with the traditional gender features to improve the accuracy of the model. After verification, the 1D CNN had the best performance on the running data set (accuracy = 92.4%, sensitivity = 97%, specificity = 84%). Compared with other methods, this method could provide new ideas for the development of models that assisted doctors in diagnosing PFPS without using complex biomechanical modeling and with high objective accuracy.
Patellofemoral pain syndrome (PFPS) is a common disease of the knee. Despite its high incidence rate, its specific cause remains unclear. The artificial neural network model can be used for computer-aided diagnosis. Traditional diagnostic methods usually only consider a single factor. However, PFPS involves different biomechanical characteristics of the lower limbs. Thus, multiple biomechanical characteristics must be considered in the neural network model. The data distribution between different characteristic dimensions is different. Thus, preprocessing is necessary to make the different characteristic dimensions comparable. However, a general rule to follow in the selection of biomechanical data preprocessing methods is lacking, and different preprocessing methods have their own advantages and disadvantages. Therefore, this paper proposes a multi-input convolutional neural network (MI-CNN) method that uses two input channels to mine the information of lower limb biomechanical data from two mainstream data preprocessing methods (standardization and normalization) to diagnose PFPS. Data were augmented by horizontally flipping the multi-dimensional time-series signal to prevent network overfitting and improve model accuracy. The proposed method was tested on the walking and running datasets of 41 subjects (26 patients with PFPS and 15 pain-free controls). Three joint angles of the lower limbs and surface electromyography signals of seven muscles around the knee joint were used as input. MI-CNN was used to automatically extract features to classify patients with PFPS and pain-free controls. Compared with the traditional single-input convolutional neural network (SI-CNN) model and previous methods, the proposed MI-CNN method achieved a higher detection sensitivity of 97.6%, a specificity of 76.0%, and an accuracy of 89.0% on the running dataset. The accuracy of SI-CNN in the running dataset was about 82.5%. The results prove that combining the appropriate neural network model and biomechanical analysis can establish an accurate, convenient, and real-time auxiliary diagnosis system for PFPS to prevent misdiagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.