Overuse of fertilizer is detrimental to the sustainability of crop production from an economic and environmental perspective. While rice side-deep fertilization technology can significantly improve fertilizer utilization efficiency, improve crop yield and reduce environmental pollution caused by improper use of fertilizer compared with conventional fertilization methods. Therefore, side-deep fertilization technology has an important role in the sustainable development of agriculture. This article describes fertilizer selection, side-deep fertilization devices and the effects of side-deep fertilization technology on rice plants and soil. We summarize the types and characteristics of side-deep fertilizers and their ratios and modes. The basic principles and characteristics of the key components of mechanical fertilization devices are described in detail, including fertilizer discharging devices (rotating disc type, outer groove wheel type, screw type), fertilizer conveying devices (pneumatic, mechanical forced type) and sensors. The effects and mechanisms of side-deep fertilization on rice growth, yield, quality, fertilizer utilization efficiency and soil microorganisms are summarized. Finally, based on current research on side-deep fertilization, future directions are identified to aid the development of this promising technology.
This study is aimed at the special working conditions of seeding on sloping land, combining advanced precision seeding technology and the structure of rotary hole filling corn precision metering device seed rowers at home and abroad, and studying soil entry characteristics, the characteristics of soil particles and the seed transport pattern in the puncture process, in order to improve the seed dispersal qualified index and reduce the coefficient of variation in the process of seeding. The simulation test of the cavity-tying device was carried out using the MBD–DEM coupling method, and it can be seen that the rocker bending angle is 120° when the force is the largest; at this time the rocker and the soil force is the largest, indicating the best effect on soil particle separation and the fastest movement speed. The single-factor test determined that the operating speed of the seed rower ranged from 0.8 to 1.2 m/s, the spring preload force of the seed rower ranged from 5.5 to 25 N, and the operating slope angle of the seed rower ranged from 8° to 16°. The optimal structure and parameter characteristics of the rotary hole filling corn precision metering device were determined with a multi-factor test, and it was proven that the rotary hole filling corn precision metering device has better performance and a higher seed rowing quality, with the qualified index reaching 96.2%. This study can provide a reference for the research of corn precision seeders, enrich the form of corn precision seeders, and effectively improve the level of corn mechanized seeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.