Earth observation satellite (EOS) systems often encounter emergency observation tasks oriented to sudden disasters (e.g., earthquake, tsunami, and mud-rock flow). However, EOS systems may not be able to provide feasible coverage time windows for emergencies, which requires that an appropriately selected satellite transfers its orbit for better observation. In this context, we investigate the orbit maneuver optimization problem. First, by analyzing the orbit coverage and dynamics, we construct three models for describing the orbit maneuver optimization problem. These models, respectively, consider the response time, ground resolution, and fuel consumption as optimization objectives to satisfy diverse user requirements. Second, we employ an adaptive differential evolution (DE) integrating ant colony optimization (ACO) to solve the optimization models, which is named ACODE. In ACODE, key components (i.e., genetic operations and control parameters) of DE are formed into a directed acyclic graph and an ACO is appropriately embedded into an algorithm framework to find reasonable combinations of the components from the graph. Third, we conduct extensive experimental studies to show the superiority of ACODE. Compared with three existing algorithms (i.e., EPSDE, CSO, and SLPSO), ACODE can achieve the best performances in terms of response time, ground resolution, and fuel consumption, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.