Tubular biological structures consisting of extracellular matrix (ECM) proteins and cells are basic functional units of all organs in animals and humans. ECM protein solutions at low concentrations (5-10 milligrams per milliliter) are abundantly used in 3D cell culture. However, their poor "printability" and minute-long gelation time have made the direct extrusion of tubular structures in bioprinting applications challenging. Here, this limitation is overcome and the continuous, template-free conversion of low-concentration collagen, elastin, and fibrinogen solutions into tubular structures of tailored size and radial, circumferential and axial organization is demonstrated. The approach is enabled by a microfabricated printhead for the consistent circumferential distribution of ECM protein solutions and lends itself to scalable manufacture. The attached confinement accommodates minute-long residence times for pH, temperature, light, ionic and enzymatic gelation. Chip hosted ECM tubular structures are amenable to perfusion with aqueous solutions and air, and cyclic stretching. Predictive collapse and reopening in a crossed-tube configuration promote all-ECM valves and pumps. Tissue level function is demonstrated by factors secreted from cells embedded within the tube wall, as well as endothelial or epithelial barriers lining the lumen. The described approaches are anticipated to find applications in ECM-based organ-on-chip and biohybrid structures, hydraulic actuators, and soft machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.