This study evaluates the tropical intraseasonal variability, especially the fidelity of The results show that current state-of-the-art GCMs still have significant problems and display a wide range of skill in simulating the tropical intraseasonal variability. The total intraseasonal (2-128 day) variance of precipitation is too weak in most of the models. About half of the models have signals of convectively coupled equatorial waves, with Kelvin and MRG-EIG waves especially prominent. However, the variances are generally too weak for all wave modes except the EIG wave, and the phase speeds are generally too fast, being scaled to excessively deep equivalent depths. An interesting result is that this scaling is consistent within a given model across modes, in that both the symmetric and antisymmetric modes scale similarly to a certain equivalent depth.Excessively deep equivalent depths suggest that these models may not have a large enough reduction in their "effective static stability" due to diabatic heating. 3The MJO variance approaches the observed value in only two of the 14 models, but is less than half of the observed value in the other 12 models. The ratio between the eastward MJO variance and the variance of its westward counterpart is too small in most of the models, which is consistent with the lack of highly coherent eastward propagation of the MJO in many models. Moreover, the MJO variance in 13 of the 14 models does not come from a pronounced spectral peak, but usually is associated with an overreddened spectrum, which in turn is associated with a too strong persistence of equatorial precipitation. The two models that arguably do best at simulating the MJO are the only ones having convective closures/triggers linked in some way to moisture convergence.4
This work documents the first version of the U.S. Department of Energy (DOE) new EnergyExascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO 2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the Key Points: • This work documents E3SMv1, the first version of the U.S. DOE Energy Exascale Earth System Model • The performance of E3SMv1 is documented with a set of standard CMIP6 DECK and historical simulations comprising nearly 3,000 years • E3SMv1 has a high equilibrium climate sensitivity (5.3 K) and strong aerosol-related effective radiative forcing (-1.65 W/m 2 ) Correspondence to: Chris Golaz, golaz1@llnl.gov Citation: Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., et al. (2019). The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model's strong aerosol-related effective radiative forcing (ERF ari+aci = −1.65 W/m 2 ) and high equilibrium climate sensitivity (ECS = 5.3 K). Plain Language Summary The U.S. Department of Energy funded the development of a new state-of-the-art Earth system model for research and applications relevant to its mission. The Energy Exascale Earth System Model version 1 (E3SMv1) consists of five interacting components for the global atmosphere, land surface, ocean, sea ice, and rivers. Three of these components (ocean, sea ice, and river) are new and have not been coupled into an Earth system model previously. The atmosphere and land surface components were created by extending existing components part of the Community Earth System Model, Version 1. E3SMv1's capabilities are demonstrated by performing a set of standardized simulation experiments described by...
[1] To assess the current status of climate models in simulating clouds, basic cloud climatologies from ten atmospheric general circulation models are compared with satellite measurements from the International Satellite Cloud Climatology Project (ISCCP) and the Clouds and Earth's Radiant Energy System (CERES) program. An ISCCP simulator is employed in all models to facilitate the comparison. Models simulated a four-fold difference in high-top clouds. There are also, however, large uncertainties in satellite high thin clouds to effectively constrain the models. The majority of models only simulated 30-40% of middle-top clouds in the ISCCP and CERES data sets. Half of the models underestimated low clouds, while none overestimated them at a statistically significant level. When stratified in the optical thickness ranges, the majority of the models simulated optically thick clouds more than twice the satellite observations. Most models, however, underestimated optically intermediate and thin clouds. Compensations of these clouds biases are used to explain the simulated longwave and shortwave cloud radiative forcing at the top of the atmosphere. Seasonal sensitivities of clouds are also analyzed to compare with observations. Models are shown to simulate seasonal variations better for high clouds than for low clouds. Latitudinal distribution of the seasonal variations correlate with satellite measurements at >0.9, 0.6-0.9, and À0.2-0.7 levels for high, middle, and low clouds, respectively. The seasonal sensitivities of cloud types are found to strongly depend on the basic cloud climatology in the models. Models that systematically underestimate middle clouds also underestimate seasonal variations, while those that overestimate optically thick clouds also overestimate their seasonal sensitivities. Possible causes of the systematic cloud biases in the models are discussed.
This study provides an overview of the coupled high‐resolution Version 1 of the Energy Exascale Earth System Model (E3SMv1) and documents the characteristics of a 50‐year‐long high‐resolution control simulation with time‐invariant 1950 forcings following the HighResMIP protocol. In terms of global root‐mean‐squared error metrics, this high‐resolution simulation is generally superior to results from the low‐resolution configuration of E3SMv1 (due to resolution, tuning changes, and possibly initialization procedure) and compares favorably to models in the CMIP5 ensemble. Ocean and sea ice simulation is particularly improved, due to better resolution of bathymetry, the ability to capture more variability and extremes in winds and currents, and the ability to resolve mesoscale ocean eddies. The largest improvement in this regard is an ice‐free Labrador Sea, which is a major problem at low resolution. Interestingly, several features found to improve with resolution in previous studies are insensitive to resolution or even degrade in E3SMv1. Most notable in this regard are warm bias and associated stratocumulus deficiency in eastern subtropical oceans and lack of improvement in El Niño. Another major finding of this study is that resolution increase had negligible impact on climate sensitivity (measured by net feedback determined through uniform +4K prescribed sea surface temperature increase) and aerosol sensitivity. Cloud response to resolution increase consisted of very minor decrease at all levels. Large‐scale patterns of precipitation bias were also relatively unaffected by grid spacing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.