Herein, the optical field distribution and electrical property improvements of the InGaN laser diode with an emission wavelength around 416 nm are theoretically investigated by adjusting the relative thickness of the first or last barrier layer in the three In 0.15 Ga 0.85 N/In 0.02 Ga 0.98 N quantum wells, which is achieved with the simulation program Crosslight. It was found that the thickness of the first or last InGaN barrier has strong effects on the threshold currents and output powers of the laser diodes. The optimal thickness of the first quantum barrier layer (FQB) and last quantum barrier layer (LQB) were found to be 225 nm and 300 nm, respectively. The thickness of LQB layer predominantly affects the output power compared to that of the FQB layer, and the highest output power achieved 3.87 times that of the reference structure (symmetric quantum well), which is attributed to reduced optical absorption loss as well as the reduced vertical electron leakage current leaking from the quantum wells to the p-type region. Our result proves that an appropriate LQB layer thickness is advantageous for achieving low threshold current and high output power lasers.
We report an investigation of the effects of different metal systems and surface treatment on the contact performance of GaN lasers. We found that multi-element metal alloy and surface chemical treatment are the keys to achieve good ohmic behavior contacts on GaN laser diodes. Pd/Ni/Au contact demonstrates excellent thermal stability and lowest specific contact resistivity in these metal systems. Properly adjusting the thickness of the Pd and Ni layer and pretreating with the KOH solution can further improve the ohmic contact performance. The improved ohmic behavior of the KOH solution pretreated Pd/Ni/Au contact is attributed to removing surface oxides and the reduction of the schottky barrier heights due to the metal Pd has a high work function and the interfacial reactions occurring between the Pd, Ni, Au, and GaN extends into the GaN film. As a result, a low contact resistivity of 1.66 × 10−5 Ω·cm2 can be achieved from Pd(10 nm)/Ni(10 nm)/Au(30 nm) contacts with KOH solution pretreated on top of the laser diode structure. The power of the GaN based laser diode with the Pd/Ni/Au metallization ohmic contact can be enhanced by 1.95 times and the threshold current decreased by 37% compared to that of the conventional ohmic contact Ni/Au.
A variety of potential applications such as visible light communications require laser sources with a narrow linewidth and a single wavelength emission in the blue light region. The gallium nitride (GaN)-based distributed feedback laser diode (DFB-LD) is a promising light source that meets these requirements. Here, we present GaN DFB-LDs that share growth and fabrication processes and have surface gratings and sidewall gratings on the same epitaxial substrate, which makes LDs with different structures comparable. By electrical pulse pumping, single-peak emissions at 398.5 and 399.95 nm with a full width at half maximum (FWHM) of 0.32 and 0.23 nm were achieved, respectively. The surface and sidewall gratings were fabricated alongside the p-contact metal stripe by electrical beam lithography and inductively coupled plasma etching. DFB LDs with 2.5 μm ridge width exhibit a smaller FWHM than those with 5 and 10 μm ridge widths, indicating that the narrow ridge width is favorable for the narrowing of the line width of the DFB LD. The slope efficiency of the DFB LD with sidewall gratings is higher than that of surface grating DFB LDs with the same ridge width and period of gratings. Our experiment may provide a reliable and simple approach for optimizing gratings and GaN DFB-LDs.
Strong absorption of the full spectrum of sunlight at high temperatures is desired for photothermal devices and thermophotovoltaics. Here, we experimentally demonstrate a thin-film broadband absorber consisting of a vanadium nitride (VN) film and a SiO2 anti-reflective layer. Owing to the intrinsic high loss of VN, the fabricated absorber exhibits high absorption over 90% in the wide range of 400-1360 nm. To further enhance the near-infrared absorption, we also propose a metamaterial absorber by depositing patterned VN square patches on the thin-film absorber. An average absorption of 90.4% over the range of 400-2500 nm is achieved due to the excitation of broad electric dipole resonance. Both thin-film and metamaterial absorbers are demonstrated to possess excellent incident angle tolerances (up to 60°) and superior thermal stability at 800 ℃. The proposed refractory VN absorbers may be potentially used for solar energy harvesting, thermal emission, and photodetection.
A variety of emerging technologies, such as visible light communication systems, require narrow linewidths and easy-to-integrate light sources. Such a requirement could be potentially fulfilled with the distributed Bragg reflector (DBR) lasers, which are also promising for the monolithical integration with other optical components. The InGaN/GaN-based surface etched DBR is designed and optimized using the finite-difference-time-domain (FDTD) method to obtain very narrow-band reflectors that can serve as a wavelength filter. The results reveal that the ultimate reflectivity depends on the grating period and duty ratio of the DBR. Based on the design, the DBR lasers with various duty ratios are fabricated, specifically, the 19th, 13th and 3rd order DBR grating with duty ratio set as 50%/75%/95%. The minimum linewidth could be achieved at 0.45 nm from the 19th order grating with a 75% duty ratio. For comparison, the Fabry–Pérot (F–P) based on the same indium gallium nitride/gallium nitride (InGaN/GaN) epitaxial wafer are fabricated. The full width at half maximum (FWHM) of the DBR laser shrank by 65% compared to that of the conventional F–P laser, which might be helpful in the application of the visible light communication system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.