Nearest-neighbor queries, which ask for returning the nearest neighbor of a query point in a set of points, are important and widely studied in many fields because of a wide range of applications. In many of these applications, such as sensor databases, location based services, face recognition, and mobile data, the location of data is imprecise. We therefore study nearest neighbor queries in a probabilistic framework in which the location of each input point and/or query point is specified as a probability density function and the goal is to return the point that minimizes the expected distance, which we refer to as the expected nearest neighbor (ENN). We present methods for computing an exact ENN or an ε-approximate ENN, for a given error parameter 0 < ε < 1, under different distance functions. These methods build an index of near-linear size and answer ENN queries in polylogarithmic or sublinear time, depending on the underlying function. As far as we know, these are the first nontrivial methods for answering exact or ε-approximate ENN queries with provable performance guarantees.
Nearest-neighbor (NN) search, which returns the nearest neighbor of a query point in a set of points, is an important and widely studied problem in many fields, and it has wide range of applications. In many of them, such as sensor databases, location-based services, face recognition, and mobile data, the location of data is imprecise. We therefore study nearest neighbor queries in a probabilistic framework in which the location of each input point is specified as a probability distribution function. We present efficient algorithms for (i) computing all points that are nearest neighbors of a query point with nonzero probability; (ii) estimating, within a specified additive error, the probability of a point being the nearest neighbor of a query point; (iii) using it to return the point that maximizes the probability being the nearest neighbor, or all the points with probabilities greater than some threshold to be the NN. We also present some experimental results to demonstrate the effectiveness of our approach.
We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input site is described by a probability distribution over a finite number of possible locations including a null location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time-space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of β-hull that may be a useful representation of uncertain hulls.
We study the convex-hull problem in a probabilistic setting, motivated by the need to handle data uncertainty inherent in many applications, including sensor databases, location-based services and computer vision. In our framework, the uncertainty of each input site is described by a probability distribution over a finite number of possible locations including a null location to account for non-existence of the point. Our results include both exact and approximation algorithms for computing the probability of a query point lying inside the convex hull of the input, time-space tradeoffs for the membership queries, a connection between Tukey depth and membership queries, as well as a new notion of β-hull that may be a useful representation of uncertain hulls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.