Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools.
BackgroundA major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging.ResultsWe conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2.ConclusionsThe top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-016-1037-6) contains supplementary material, which is available to authorized users.
A common assumption in comparative genomics is that orthologous genes share greater functional similarity than do paralogous genes (the “ortholog conjecture”). Many methods used to computationally predict protein function are based on this assumption, even though it is largely untested. Here we present the first large-scale test of the ortholog conjecture using comparative functional genomic data from human and mouse. We use the experimentally derived functions of more than 8,900 genes, as well as an independent microarray dataset, to directly assess our ability to predict function using both orthologs and paralogs. Both datasets show that paralogs are often a much better predictor of function than are orthologs, even at lower sequence identities. Among paralogs, those found within the same species are consistently more functionally similar than those found in a different species. We also find that paralogous pairs residing on the same chromosome are more functionally similar than those on different chromosomes, perhaps due to higher levels of interlocus gene conversion between these pairs. In addition to offering implications for the computational prediction of protein function, our results shed light on the relationship between sequence divergence and functional divergence. We conclude that the most important factor in the evolution of function is not amino acid sequence, but rather the cellular context in which proteins act.
One of the most important tasks of modern bioinformatics is the development of computational tools that can be used to understand and treat human disease. To date, a variety of methods have been explored and algorithms for candidate gene prioritization are gaining in their usefulness. Here, we propose an algorithm for detecting gene-disease associations based on the human protein-protein interaction network, known gene-disease associations, protein sequence, and protein functional information at the molecular level. Our method, PhenoPred, is supervised: first, we mapped each gene/protein onto the spaces of disease and functional terms based on distance to all annotated proteins in the protein interaction network. We also encoded sequence, function, physicochemical, and predicted structural properties, such as secondary structure and flexibility. We then trained support vector machines to detect gene-disease associations for a number of terms in Disease Ontology and provided evidence that, despite the noise/incompleteness of experimental data and unfinished ontology of diseases, identification of candidate genes can be successful even when a large number of candidate disease terms are predicted on simultaneously.
Motivation: The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, with protein function prediction and disease gene prioritization gaining wide recognition. Although various algorithms have been proposed for these tasks, evaluating their performance is difficult owing to problems caused both by the structure of biomedical ontologies and biased or incomplete experimental annotations of genes and gene products.Results: We propose an information-theoretic framework to evaluate the performance of computational protein function prediction. We use a Bayesian network, structured according to the underlying ontology, to model the prior probability of a protein’s function. We then define two concepts, misinformation and remaining uncertainty, that can be seen as information-theoretic analogs of precision and recall. Finally, we propose a single statistic, referred to as semantic distance, that can be used to rank classification models. We evaluate our approach by analyzing the performance of three protein function predictors of Gene Ontology terms and provide evidence that it addresses several weaknesses of currently used metrics. We believe this framework provides useful insights into the performance of protein function prediction tools.Contact: predrag@indiana.eduSupplementary information: Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.