Polycystic liver disease (PLD) is the result of embryonic ductal plate malformation of the intrahepatic biliary tree. The phenotype consists of numerous cysts spread throughout the liver parenchyma. Cystic bile duct malformations originating from the peripheral biliary tree are called Von Meyenburg complexes (VMC). In these patients embryonic remnants develop into small hepatic cysts and usually remain silent during life. Symptomatic PLD occurs mainly in the context of isolated polycystic liver disease (PCLD) and autosomal dominant polycystic kidney disease (ADPKD). In advanced stages, PCLD and ADPKD patients have massively enlarged livers which cause a spectrum of clinical features and complications. Major complaints include abdominal pain, abdominal distension and atypical symptoms because of voluminous cysts resulting in compression of adjacent tissue or failure of the affected organ. Renal failure due to polycystic kidneys and non-renal extra-hepatic features are common in ADPKD in contrast to VMC and PCLD. In general, liver function remains prolonged preserved in PLD. Ultrasonography is the first instrument to assess liver phenotype. Indeed, PCLD and ADPKD diagnostic criteria rely on detection of hepatorenal cystogenesis, and secondly a positive family history compatible with an autosomal dominant inheritance pattern. Ambiguous imaging or screening may be assisted by genetic counseling and molecular diagnostics. Screening mutations of the genes causing PCLD (PRKCSH and SEC63) or ADPKD (PKD1 and PKD2) confirm the clinical diagnosis. Genetic studies showed that accumulation of somatic hits in cyst epithelium determine the rate-limiting step for cyst formation. Management of adult PLD is based on liver phenotype, severity of clinical features and quality of life. Conservative treatment is recommended for the majority of PLD patients. The primary aim is to halt cyst growth to allow abdominal decompression and ameliorate symptoms. Invasive procedures are required in a selective patient group with advanced PCLD, ADPKD or liver failure. Pharmacological therapy by somatostatin analogues lead to beneficial outcome of PLD in terms of symptom relief and liver volume reduction.
Significance Polycystic liver disease (PCLD) is an autosomal dominantly inherited disorder characterized by multiple fluid-filled hepatic cysts that may cause an extremely enlarged liver. PCLD is genetically heterogeneous, and mutations in PRKCSH and SEC63 are present in ∼25% of PCLD patients. This research identifies four unique LRP5 mutations in four independent families that were all located at highly conserved protein domains. Functional activity analyses suggest that mutant LRP5 reduces wingless (Wnt) signal activation. This study suggests that imbalanced Wnt signaling is related to hepatic cyst formation.
A diagnostic strategy in general paediatric practice of using a simple clinical case definition for suspected IBD in combination with a positive faecal calprotectin result increases the specificity to detect IBD and reduces the need for referral to a paediatric gastroenterology centre with a very low risk of missing cases.
Mutations in Polycystic Kidney Disease proteins (PKD1 or PKD2) are causative for autosomal dominant polycystic kidney disease (ADPKD). However, a small subset of ADPKD probands do not harbor a mutation in any of the known genes. Low density lipoprotein Receptor-related Protein 5 (LRP5) was recently associated with hepatic cystogenesis in isolated polycystic liver disease (PCLD). Here, we demonstrate that this gene may also have a role in unlinked and sporadic ADPKD patients. In a cohort of 79 unrelated patients with adult-onset ADPKD, we identified a total of four different LRP5 variants that were predicted to be pathogenic by in silico tools. One ADPKD patient has a positive family history for ADPKD and variant LRP5 c.1680G4T; p.(Trp560Cys) segregated with the disease. Although also two PKD1 variants probably affecting protein function were identified, luciferase activity assays presented for three LRP5 variants significant decreased signal activation of canonical Wnt signaling. This study contributes to the genetic spectrum of ADPKD. Introduction of the canonical Wnt signaling pathway provides new avenues for the study of the pathophysiology.
Background Polycystic liver disease (PLD) is an inherited disorder characterized by numerous cysts in the liver. Autosomal dominant polycystic kidney and liver disease (ADPKD and ADPLD, respectively) have been linked to pathogenic GANAB variants. GANAB encodes the α-subunit of glucosidase II (GIIα). Here, we report the identification of novel GANAB variants in an international cohort of patients with the primary phenotype of PLD using molecular inversion probe analysis. Results Five novel GANAB variants were identified in a cohort of 625 patients with ADPKD or ADPLD. In silico analysis revealed that these variants are likely to affect functionally important domains of glucosidase II α-subunit. Missense variant c.1835G>C p.(Arg612Pro) was predicted to disrupt the structure of the active site of the protein, likely reducing its activity. Frameshift variant c.687delT p.(Asp229Glufs*60) introduces a premature termination codon predicted to have no activity. Two nonsense variants (c.2509C>T; p.(Arg837*), and c.2656C>T; p.(Arg886*)) and splice variant c.2002+1G>C, which causes aberrant pre-mRNA splicing and affecting RNA processing, result in truncated proteins and are predicted to cause abnormal binding of α- and β-subunits of glucosidase II, thus affecting its enzymatic activity. Analysis of glucosidase II subunits in cell lines shows expression of a truncated GIIα protein in cells with c.687delT, c.2509C>T, c.2656C>T, and c.2002+1G>C variants. Incomplete colocalization of the subunits was present in cells with c.687delT or c.2002+1G>C variants. Other variants showed normal distribution of GIIα protein. Conclusions We identified five novel GANAB variants associated with PLD in both ADPKD and ADPLD patients supporting a common pathway in cystogenesis. These variants may lead to decreased or complete loss of enzymatic activity of glucosidase II which makes GANAB a candidate gene to be screened in patients with an unknown genetic background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.