Parkinson disease is a common neurodegenerative disorder that leads to difficulty in effectively translating thought into action. Although it is known that dopaminergic neurons that innervate the striatum die in Parkinson disease, it is not clear how this loss leads to symptoms. Recent work has implicated striatopallidal medium spiny neurons (MSNs) in this process, but how and precisely why these neurons change is not clear. Using multiphoton imaging, we show that dopamine depletion leads to a rapid and profound loss of spines and glutamatergic synapses on striatopallidal MSNs but not on neighboring striatonigral MSNs. This loss of connectivity is triggered by a new mechanism-dysregulation of intraspine Cav1.3 L-type Ca(2+) channels. The disconnection of striatopallidal neurons from motor command structures is likely to be a key step in the emergence of pathological activity that is responsible for symptoms in Parkinson disease.
The origin and termination of prefrontal cortical projections to the periaqueductal gray (PAG) were defined with retrograde axonal tracers injected into the PAG and anterograde axonal tracers injected into the prefrontal cortex (PFC). The retrograde tracer experiments demonstrate projections to the PAG that arise primarily from the medial prefrontal areas 25, 32, and 10m, anterior cingulate, and dorsomedial areas 24b and 9, select orbital areas 14c, 13a, Iai, 12o, and caudal 12l, and ventrolateral area 6v. Only scattered cells were retrogradely labeled in other areas in the PFC. Caudal to the PFC, projections to the PAG also arise from the posterior cingulate cortex, the dorsal dysgranular, and granular parts of the temporal polar cortex, the ventral insula, and the dorsal bank of the superior temporal sulcus. Cells were also labeled in subcortical structures, including the central nucleus and ventrolateral part of the basal nucleus of the amygdala. The anterograde tracer experiments indicate that projections from distinct cortical areas terminate primarily in individual longitudinal PAG columns. The projections from medial prefrontal areas 10m, 25, and 32 end predominantly in the dorsolateral columns, bilaterally. Fibers from orbital areas 13a, Iai, 12o, and caudal 12l terminate primarily in the ventrolateral column, whereas fibers from dorsomedial areas 9 and 24b terminate mainly in the lateral column. The PFC areas that project to the PAG include most of the areas previously defined as the "medial prefrontal network." The areas that comprise this network represent a visceromotor system, distinct from the sensory related "orbital network."
The organization of projections from the prefrontal cortex (PFC) to the striatum in relation to previously defined "orbital" and "medial" networks within the PFC were studied in monkeys using anterograde and retrograde tracing techniques. The results indicate that the orbital and medial networks connect to different striatal regions. The ventromedial striatum (the medial caudate nucleus, accumbens nucleus, and ventral putamen) receives input predominantly from the medial PFC (mPFC) and orbital areas 12o, Iai, and 13a, which constitute the "medial" network. More specifically, caudal medial areas 32, 25, and 14r project to the medial edge of the caudate nucleus, accumbens nucleus, and ventromedial putamen, whereas rostral areas 10o, 10m, and 11m are restricted to the medial edge of the caudate. Projections from orbital areas 12o, 13a, and Iai extend more laterally into the lateral accumbens and the ventral putamen. Area 24 gives rise to a divided pattern of projections, including fibers to the ventromedial striatum, apparently from area 24b, and fibers to the dorsolateral striatum, apparently from area 24c. Other areas of orbital cortex (11l, 12m, 12l, 13m, 13l, Ial, and Iam) that constitute the "orbital" network project primarily to the central part of the rostral striatum. This region includes the central and lateral parts of the caudate nucleus, and the ventromedial putamen, on either side of the internal capsule. The results support the subdivision of the orbital and medial PFC into "medial" and "orbital" networks and suggest that the prefrontostriatal projections reflect the functional organization of the PFC rather than topographic location.
The organization of projections from the macaque orbital and medial prefrontal cortex (OMPFC) to the hypothalamus and related regions of the diencephalon and midbrain was studied with retrograde and anterograde tracing techniques. Almost all of the prefrontal cortical projections to the hypothalamus arise from areas within the "medial prefrontal network," as defined previously by Carmichael and Price ([1996] J. Comp. Neurol. 371:179-207). Outside of the OMPFC, only a few neurons in the temporal pole, anterior cingulate and insular cortex project to the hypothalamus. Axons from the OMPFC also innervate the basal forebrain, zona incerta, and ventral midbrain. Within the medial prefrontal network, different regions project to distinct parts of the hypothalamus. The medial wall areas 25 and 32 send the heaviest projections to the hypothalamus; axons from these areas are especially concentrated in the anterior hypothalamic area and the ventromedial hypothalamic nucleus. Orbital areas 13a, 12o, and Iai, which are related to the medial prefrontal network, selectively innervate the lateral hypothalamic area, especially its posterior part. The cellular regions of the paraventricular, supraoptic, suprachiasmatic, arcuate, and mammillary nuclei are conspicuously devoid of cortical axons, but many axons abut the borders of these nuclei and may contact dendrites that extend from them. Areas within the orbital prefrontal network on the posterior orbital surface and agranular insula send only weak projections to the posterior lateral hypothalamic area. The rostral orbital surface does not contribute to the cortico-hypothalamic projection.
The organization of projections from the macaque orbital and medial prefrontal cortex (OMPFC) to the hypothalamus and related regions of the diencephalon and midbrain was studied with retrograde and anterograde tracing techniques. Almost all of the prefrontal cortical projections to the hypothalamus arise from areas within the "medial prefrontal network," as defined previously by Carmichael and Price ([1996] J. Comp. Neurol. 371:179-207). Outside of the OMPFC, only a few neurons in the temporal pole, anterior cingulate and insular cortex project to the hypothalamus. Axons from the OMPFC also innervate the basal forebrain, zona incerta, and ventral midbrain. Within the medial prefrontal network, different regions project to distinct parts of the hypothalamus. The medial wall areas 25 and 32 send the heaviest projections to the hypothalamus; axons from these areas are especially concentrated in the anterior hypothalamic area and the ventromedial hypothalamic nucleus. Orbital areas 13a, 12o, and Iai, which are related to the medial prefrontal network, selectively innervate the lateral hypothalamic area, especially its posterior part. The cellular regions of the paraventricular, supraoptic, suprachiasmatic, arcuate, and mammillary nuclei are conspicuously devoid of cortical axons, but many axons abut the borders of these nuclei and may contact dendrites that extend from them. Areas within the orbital prefrontal network on the posterior orbital surface and agranular insula send only weak projections to the posterior lateral hypothalamic area. The rostral orbital surface does not contribute to the cortico-hypothalamic projection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.