We give a detailed description of the measurement of the W boson mass, MW , performed on an integrated luminosity of 4.3 fb −1 , which is based on similar techniques as used for our previous measurement done on an independent data set of 1 fb −1 of data. The data were collected using the D0 detector at the Fermilab Tevatron Collider. This data set yields 1.68 × 10 6 W → eν candidate events. We measure the mass using the transverse mass, electron transverse momentum, and missing transverse energy distributions. The MW measurements using the transverse mass and the electron transverse momentum distributions are the most precise of these three and are combined to give MW = 80.367 ± 0.013 (stat) ± 0.022 (syst) GeV = 80.367 ± 0.026 GeV. When combined with our earlier measurement on 1 fb −1 of data, we obtain MW = 80.375 ± 0.023 GeV.
We present a search for a narrow resonance in the inclusive diphoton final state using ∼ 2.7 fb −1 of data collected with the D0 detector at the Fermilab Tevatron pp Collider. We observe good agreement between the data and the background prediction, and set the first 95% C.L. upper limits on the production cross section times the branching ratio for decay into a pair of photons for resonance masses between 100 and 150 GeV. This search is also interpreted in the context of several models of electroweak symmetry breaking with a Higgs boson decaying into two photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.