Automatic road extraction from the high resolution remote sensing images is of great importance in intelligent transportation and image processing. Hence, in this paper, an effective road extraction algorithm for high resolution remote sensing images based on the circular projection transformation is proposed. The main idea of the proposed algorithm lies in that the road extraction results are obtained by selecting a suitable initial template, and then search the matched templates through moving the initial template in two directions. Firstly, the circular projection vector of the initial template is achieved by calculating the circular projection value at a specific radius. Secondly, the optimal radius of the circle in circular projection transformation and the length of the seeking step and the seeking angle are determined. Thirdly, for each seeking step the similarity between the target template and the initial template is computed, and the template with the highest similarity is chosen. Finally, roads can be detected by the correct direction by exchanging the first two detected points. To make performance evaluation, the IKONOS dataset is utilized and DMES and AUA algorithm are compared. The experimental results demonstrate that the proposed algorithm can automatic the roads from high resolution remote sensing images effectively and efficiently.
In the automatic sorting process, overlapping translucent and flexible workpieces on the conveyor belt, blurring the imaging edge features of translucent and flexible workpieces is a challenge to locate the upper and lower workpieces spatially, we propose a method for locating translucent and flexible workpieces spatially under the overlapping environment in conjunction with the most common automatic sorting of translucent and flexible workpieces such as infusion tube drip buckets. Firstly, we propose a rectangular surface light source based on 650 nm band and monocular CCD for imaging translucent workpieces such as infusion tube drip buckets and optimize the imaging parameters. Secondly, we study a feature matching recognition algorithm for flexible workpieces that are prone to deformation, construct a mapping relationship between the position of overlapping layers and imaging quality of translucent and flexible workpieces such as infusion tube drip buckets based on clarity and information entropy, and establish The mapping relationship between the position of the overlapping layers and the imaging quality of translucent and flexible workpieces such as infusion tube drip buckets is constructed based on clarity and information entropy, and a local spatial coordinate conversion model is established. Finally, the spatial positioning coordinates of overlapping and non-overlapping translucent and flexible workpieces in the local coordinate system are identified, and the results show that the imaging method and theory can be effectively applied to the identification of overlapping and spatial positioning coordinates in the automatic sorting of translucent workpieces such as infusion tube drip buckets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.