Raman spectroscopy was used to study the band bending at the interface of ZnSe/GaAs hetero-structures. A series of samples, which contained a ZnSe buffer layer, 0-35 nm thick, grown at a lower temperature than the much thicker ZnSe epilayer, by metal-organic chemical vapor phase deposition, were investigated. Compared with that of the GaAs substrate, an enhancement of the intensity of the LO GaAs phonon was found in samples grown without and with a thick (≥28 nm) buffer layer, but not in a sample grown with a 4 nm thick buffer layer. The enhancement is attributed to the electric field induced Raman scattering, resulted from a strong band bending on the GaAs side of the hetero-structure. The results suggest that the direction of the interfacial electric field on the GaAs side will reverse with increasing buffer layer thickness. Between this reversal, a near flat band condition can be achieved, as was found in a sample grown with a 4 nm buffer layer. This suggestion is consistent with the concomitant improvement of the structure of the epilayer and of the interfacial quality of the hetero-junction, which unpins the Fermi level and affects the band bending.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.