The interesting discovery reported here that soluble adenovirus serotype 5 (Ad5) fiber proteins enter cells without the virus was a serendipitous result during our development of Ad5 capsid proteins as nonviral gene transfer vectors. The Ad5 capsid fiber and penton proteins mediate infection. The fiber docks to a noninternalizing cell surface protein called the coxsackievirus-Ad receptor (CAR), followed by penton binding to integrins, triggering integrin-mediated endocytosis of the virus. In our previous work, we assembled the nonviral complex, 3PO, which utilized the penton to mediate gene transfer through integrin binding and endocytosis. Here, we tested whether incorporating the fiber targets 3PO to CAR, thus recapitulating the Ad5 infection pathway. As CAR is not an endocytic receptor, we were surprised to find that the fiber alone, without the penton, enabled gene transfer by binding CAR, but internalizing through an unknown mechanism. We show here that the fiber distributes to the nucleus and cytoplasm after temperature-independent uptake, whereas the penton accumulates around the nucleus after temperature-dependent uptake. Fiber uptake by HeLa cells is also actin-dependent, requires the fiber tail/shaft region, and is largely inhibited by heparin. This study raises the possibility that alternative pathways may enable both viral and nonviral cell entry. Gene Therapy (2005) 12, 225-237.
To better understand intracellular and extracellular trafficking of Mycobacterium bovis bacillus Calmette-Guérin (BCG) when used as an intravesical agent in the treatment of transitional cell carcinoma (TCC) of the bladder, recombinant BCG (rBCG) expressing the jellyfish green fluorescent protein (GFP) was created. When the MB49.1 murine TCC cell line was incubated with GFP-expressing rBCG, internalization of the pathogen could be directly visualized by UV microscopy and quantitated by flow cytometry. The in vitro internalization of the GFP rBCG by the bladder tumor cells was temperature dependent, occurring most readily at 37؇C and being severely inhibited at 4؇C. Optimum internalization was achieved in vitro at a 10:1 BCG-to-tumor cell ratio over 24 h during which approximately 16% of the tumor cells became infected. Cytochalasin B, a phagocytosis inhibitor, abrogated the ingestion by almost 100% at a concentration of 200 g/ml, indicating that contractile microfilaments likely played an important role in this process. By using mitomycin, a DNA cross-linking reagent, to inhibit proliferation of MB49.1 cells, clearance of about 40% of the green rBCG was achieved by 3 days postinfection. No significant difference between the GFP rBCG and wild-type BCG was observed in the ability to induce the expression of cell membrane proteins of major histocompatibility classes I and II, ICAM-I and-II, B7-1 and-2, or Fas from MB49.1 cells or cytokine production from mouse spleen cells. These results indicate that GFP rBCG may serve as a useful substitute for wild-type BCG in future studies of in vivo trafficking during experimental and clinical immunotherapy.
BackgroundThe expression of mutant HTT leads to many cellular alterations, including abnormal vesicle recycling, loss of signalling by brain-derived neurotrophic factor, excitotoxicity, perturbation of Ca2+ signalling, decreases in intracellular ATP, alterations of gene transcription, inhibition of protein clearance pathways, mitochondrial and metabolic disturbances, and ultimately cell death. While robust mammalian systems have been developed to model disease and extensive mechanistic insights have emerged, significant differences between rodent and human cells and between non-neuronal cells and neurons limit the utility of these models for accurately representing human disease. Human pluripotent stem cells can generate highly specified cell populations, including DARPP32-positive MSNs of the striatum, and provide a method for modelling HD in human neurons carrying the mutation. As it is caused by one single gene, HD is an ideal disorder for exploring the utility of modelling disease in induced pluripotent stem cells (iPSCs) through reprogramming adult cells from HD patients with known patterns of disease onset and duration.AimsGenerate iPSC lines from HD patients and controls and identify CAG-repeat expansion associated phenotypes.Methods/techniquesThrough the efforts of an international consortium effort, 14 lines were generated, differentiated into neuronal populations and assessed for CAG-repeat dependent outcome measures.Results/outcomesHD iPSC lines have reproducible CAG expansion–associated phenotypes upon differentiation, including CAG expansion-associated changes in gene expression patterns and alterations in electrophysiology, metabolism, cell adhesion, and ultimately an increased risk of cell death. While the lines with the longest repeats (HD180) showed a phenotype across all assays, those with shorter repeats (HD60) showed phenotypes in a specific sub set of assays. The most sensitive assay for establishing repeat dependent effects was found to be calcium responses to stress.ConclusionsThis HD iPSC collection represents a unique and well-characterised resource to elucidate disease mechanisms in HD and provides a novel human stem cell platform for screening new candidate therapeutics.FundingNIH, CHDI, CIRM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.