Boron nitride (BN) nanotubes were synthesized through chemical vapor deposition over a wafer made by a LaNi5/B mixture and nickel powder at 1473 K. Scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were performed to characterize the microstructure and composition of BN nanotubes. It was found that the obtained BN nanotubes were straight with a diameter of 30-50 nm and a length of up to several microns. We first verify that the BN nanotubes can storage hydrogen by means of an electrochemical method, though its capacity is low at present. The hydrogen desorption of nonelectrochemical recombination in cyclic voltammograms, which is considered as the slow reaction at BN nanotubes, suggests the possible existence of strong chemisorption of hydrogen, and it may lead to the lower discharge capacity of BN nanotubes. It is tentatively concluded that the improvement of the electrocatalytic activity by surface modification with metal or alloy would enhance the electrochemical hydrogen storage capacity of BN nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.