Cholesterol esterification proteins Sterol-O acyltransferases (SOAT) 1 and 2 are emerging prognostic markers in many cancers. These enzymes utilise fatty acids conjugated to coenzyme A to esterify cholesterol. Cholesterol esterification is tightly regulated and enables formation of lipid droplets that act as storage organelles for lipid soluble vitamins and minerals, and as cholesterol reservoirs. In cancer, this provides rapid access to cholesterol to maintain continual synthesis of the plasma membrane. In this systematic review and meta-analysis, we summarise the current depth of understanding of the role of this metabolic pathway in pan-cancer development. A systematic search of PubMed, Scopus, and Web of Science for preclinical studies identified eight studies where cholesteryl ester concentrations were compared between tumour and adjacent-normal tissue, and 24 studies where cholesterol esterification was blocked by pharmacological or genetic approaches. Tumour tissue had a significantly greater concentration of cholesteryl esters than non-tumour tissue (p<0.0001). Pharmacological or genetic inhibition of SOAT was associated with significantly smaller tumours of all types (p≤0.002). SOAT inhibition increased tumour apoptosis (p=0.007), CD8+ lymphocyte infiltration and cytotoxicity (p≤0.05), and reduced proliferation (p=0.0003) and metastasis (p<0.0001). Significant risk of publication bias was found and may have contributed to a 32% overestimation of the meta-analysed effect size was overestimated. Avasimibe, the most frequently used SOAT inhibitor, was effective at doses equivalent to those previously reported to be safe and tolerable in humans. This work indicates that SOAT inhibition should be explored in clinical trials as an adjunct to existing anti-neoplastic agents.
This paper presents the results of the electrical conductivity measurements of sand-clay mixtures that were formed of three types of sands and five pure clays and prepared with water of low salinity. The results show that an increase in clay content results in an increase in the overall electrical conductivityeither. Moreover, a direct or inverse relationship between the overall soil electrical conductivity (σT) and porosity (n) has been observed depending on whether the water conductivity (σw) is higher or lower than the clay particle surface conductivity (σs). The common predictive models on electrical conductivity were developed for sands and clayey sands with a clay content of less than 20%. This research has extended these studies to include clays, sandy clays, and clayey sands to show that it is possible to predict the electrical conductivity of a soil from its composition and fabric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.