In this study, ductile mode chip formation in conventional cutting and ultrasonic vibration assisted cutting of tungsten carbide workpiece material has been investigated through experimental grooving tests using CBN tools on a CNC lathe. The experimental results show that as the depth of cut was increased there was a transition from ductile mode to brittle mode chip formation in grooving both with and without ultrasonic vibration assistance. However, the critical value of the depth of cut for ductile mode cutting with ultrasonic vibration assistance was much larger than that without ultrasonic vibration assistance. The ratio of the volume of removed material to the volume of the machined groove, f ab , was used to identify the ductile mode and brittle mode of chip formation in the grooving tests, in which f ab <1 indicates ductile mode chip formation and f ab >1 indicates brittle mode chip formation. For the same radius of tool cutting edge, the value of f ab at the ductile-brittle transition region either with or without ultrasonic vibration was less than 1. However, the f ab value with ultrasonic vibration assistance was close to 1. The experimental results demonstrate that ultrasonic vibration assisted cutting can be used to improve the ductile mode cutting performance of tungsten carbide work material.
In order to diamond-turn optical glasses to a nanometric surface finish, it is critical to determine the transition point from brittle mode to ductile mode. This paper presents various experimental techniques to study this transition and discusses the mechanism of the surface generation. It has been recognized that tool wear is a serious issue in diamond turning of glasses. Thus, research in future should be concentrated on this field to enable the technology to be applied in commercial production.
In this paper, the cutting modes for grooving a tungsten carbide work material are investigated and presented. The grooving tests were carried out on an inclined workpiece surface using a solid CBN tool on a CNC lathe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.