A detailed analysis of the radiative recombination processes in Ag(InGa)Se2 thin films grown by a three-stage method was carried out by photoluminescence. The temperature and excitation dependence of the photoluminescence spectra was used to identify the recombination types and determine the ionization energy of the defects in the films. Significant differences were observed between the spectra of the Ag-rich and Ag-poor samples. The Ag-rich films were dominated by two emission peaks of donor acceptor pairs (DAPs). The DAP at lower energy level is attributed to recombination of donor level 13.8 meV (Agi) with acceptor level 70.3 meV (AgIn), while the one at high energy level is assigned to recombination of donor level 18.5 meV (Agi) with acceptor level 108.9 (AgSe). When Ag/III atomic ratio was near 2.00, a phonon related-structure began to appear, which is attributed to the phonon replica of the high energy level DAP. In the case of Ag-poor AIGS samples, the dominant broad asymmetric peaks of AIGS films with different Ag/III atomic ratios were related to potential fluctuation at low temperature, and the compensation level decreased with increasing Ag/III atomic ratio. The emission line was assigned to recombination of donor level 12.7 meV (Agi) with acceptor level 175 meV (AgGa2). When the excitation power and temperature were increased, new free-bound and DAP emission lines began to appear. The free-bound was assigned to the transition from the conduction band to an acceptor level of 80 meV (AgIn). The DAP was assigned to recombination of donor level 20 meV (VSe) with acceptor level 145 meV (AgGa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.