Some epidemiological studies suggest that exposure to power frequency magnetic fields (MFs) may be associated with an elevated risk of human cancer, but the experimental database remains limited and controversial. We investigated the hypothesis that 60-Hz MF action at the cellular level produces changes in gene expression that can result in neoplastic transformation. Twenty-four hour 200 microT continuous MF exposure produced negative results in two standard transformation systems (Syrian hamster embryo cells and C3H/10T1/2 murine fibroblasts) with or without postexposure to a chemical promoter. This prompted a reexamination of previously reported MF-induced changes in gene expression in human HL60 cells. Extensive testing using both coded and uncoded analyses was negative for an MF effect. Using the same exposure conditions as in the transformation studies, no MF-induced changes in ornithine decarboxylase expression were observed in C3H/10T1/2 cells, casting doubt on a promotional role of MF for the tested cells and experimental conditions. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D Figure 3. A Figure 3. B Figure 4. Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 6. E Figure 7. Figure 8. A Figure 8. B Figure 8. C Figure 9. Figure 10. A Figure 10. B
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.