The problem of a semi-infinite propagating crack in the piezoelectric material subjected to a dynamic anti-plane concentrated body force is investigated in the present study. It is assumed that between the growing crack surfaces there is a permeable vacuum free space, in which the electrostatic potential is nonzero. It is noted that this problem has characteristic lengths and a direct attempt towards solving this problem by transform and Wiener-Hopf techniques [1] is not applicable. This paper proposes a new fundamental solution for propagating crack in the piezoelectric material and the transient response of the propagating crack is determined by superposition of the fundamental solution in the Laplace transform domain. The fundamental solution represents the responses of applying exponentially distributed loadings in the Laplace transform domain on the propagating crack surface. Exact analytical transient solutions for the dynamic stress intensity factor and the dynamic electric displacement intensity factor are obtained by using the Cagniard-de Hoop method [2,3] of Laplace inversion and are expressed in explicit forms. Finally, numerical results based on analytical solutions are calculated and are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.