Divertor tungsten (W) erosion source during edge localized mode (ELM) bursts in EAST is investigated based on optical emission spectroscopy on atomic neutral tungsten line emission at 400.9 nm. Both temporal evolution and total source strength are analyzed and compared in three different ELM mitigation schemes including natural ELMs, resonant magnetic perturbations (RMP) and 2.45 GHz lower hybrid wave (LHW). The mitigation of W source caused by single ELM impact at the divertor target is mainly attributed to the reduction of the W source production in the ELM decay phase. However, with the increase of ELM frequency, the time-averaged intra-ELM W source during an ELM cycle rises and dominates the evolution of the total W source with increasing fraction, which exhibits strong correlation with the core W level in the RMP scheme. In the natural ELM scheme, the pedestal electron temperature is found not only to control the effective W sputtering yield at target during ELMs, thus influencing the intra-ELM W source, but also to be related to the delay time between the divertor ELM WI emission and the core extreme ultraviolet bolometer (XUV) signal which can scale with the parallel ion transit time. Furthermore, the delay time is found to have more consistent dependence on the pedestal plasma collisionality. The rise time of intra-ELM WI emission increases when RMP or LHW is applied, revealing a different ELM mitigation mechanism in comparison with the natural ELM scheme. The temporal profiles of the intra-ELM WI emission in different ELM mitigation schemes are compared and the potential mechanism is discussed. Besides, the ELM mitigation effects with RMP are found to be asymmetric at the outer and inner divertor targets, which is characterized by the different variations of the intra-ELM W source strength and the rise time of WI emission with the ramp-up of RMP coil current. Divertor partial detachment is achieved simultaneously with strong ELM mitigation under a suitable RMP phase difference without additional gas puff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.