We report the evolution of superconductivity in an FeSe thin flake with systematically regulated carrier concentrations by the liquid-gating technique. With electron doping tuned by the gate voltage, high-temperature superconductivity with an onset at 48 K can be achieved in an FeSe thin flake with T_{c} less than 10 K. This is the first time such high temperature superconductivity in FeSe is achieved without either an epitaxial interface or external pressure, and it definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with T_{c}^{onset} as high as 48 K in bulk FeSe. Intriguingly, our data also indicate that the superconductivity is suddenly changed from a low-T_{c} phase to a high-T_{c} phase with a Lifshitz transition at a certain carrier concentration. These results help to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on the further pursuit of a higher T_{c} in these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.