We have carried out a systematic experimental investigation to address the question why thin films of Fe3O4 (magnetite) generally have a very broad Verwey transition with lower transition temperatures as compared to the bulk. We observed using x-ray photoelectron spectroscopy, xray diffraction and resistivity measurements that the Verwey transition in thin films is drastically influenced not only by the oxygen stoichiometry but especially also by the substrate-induced microstructure. In particular, we found (1) that the transition temperature, the resistivity jump, and the conductivity gap of fully stoichiometric films greatly depends on the domain size, which increases gradually with increasing film thickness, (2) that the broadness of the transition scales with the width of the domain size distribution, and (3) that the hysteresis width is affected strongly by the presence of antiphase boundaries. Films grown on MgO (001) substrates showed the highest and sharpest transitions, with a 200 nm film having a T V of 122 K, which is close to the bulk value. Films grown on substrates with large lattice constant mismatch revealed very broad transitions, and yet, all films show a transition with a hysteresis behavior, indicating that the transition is still first order rather than higher order.
Fe 3 O 4 (magnetite) is one of the most elusive quantum materials and at the same time one of the most studied transition metal oxide materials for thin film applications. The theoretically expected half-metallic behavior generates high expectations that it can be used in spintronic devices. Yet, despite the tremendous amount of work devoted to preparing thin films, the enigmatic first order metal-insulator transition and the hall mark of magnetite known as the Verwey transition, is in thin films extremely broad and occurs at substantially lower temperatures as compared to that in high quality bulk single crystals. Here we have succeeded in finding and making a particular class of substrates that allows the growth of magnetite thin films with the Verwey transition as sharp as in the bulk. Moreover, we are now able to tune the transition temperature and, using tensile strain, increase it to substantially higher values than in the bulk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.