The growth behavior, stability, electronic and magnetic properties of the Gd2Sin− (n = 3–12) clusters are reported, which are investigated using density functional theory calculations combined with the Saunders ‘Kick’ and the Artificial Bee Colony algorithm. The lowest-lying structures of Gd2Sin− (n = 3–12) are all exohedral structures with two Gd atoms face-capping the Sin frameworks. Results show that the pentagonal bipyramid (PB) shape is the basic framework for the nascent growth process of the present clusters, and forming the PB structure begins with n = 5. The Gd2Si5− is the potential magic cluster due to significantly higher average binding energies and second order difference energies, which can also be further verified by localized orbital locator and adaptive natural density partitioning methods. Moreover, the localized f-electron can be observed by natural atomic orbital analysis, implying that these electrons are not affected by the pure silicon atoms and scarcely participate in bonding. Hence, the implantation of these elements into a silicon substrate could present a potential alternative strategy for designing and synthesizing rare earth magnetic silicon-based materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.