ABSTRACT:Using high resolution satellite imagery to detect, analyse and extract landslides automatically is an increasing strong support for rapid response after disaster. This requires the formulation of procedures and knowledge that encapsulate the content of disaster area in the images. Object-oriented approach has been proved useful in solving this issue by partitioning land-cover parcels into objects and classifies them on the basis of expert rules. Since the landslides information present in the images is often complex, the extraction procedure based on the object-oriented approach should consider primarily the semantic aspects of the data. In this paper, we propose a scheme for recognizing landslides by using an object-oriented analysis technique and a semantic reasoning model on high spatial resolution optical imagery. Three case regions with different data sources are presented to evaluate its practicality. The procedure is designed as follows: first, the Gray Level Co-occurrence Matrix (GLCM) is used to extract texture features after the image explanation. Spectral features, shape features and thematic features are derived for semiautomatic landslide recognition. A semantic reasoning model is used afterwards to refine the classification results, by representing expert knowledge as first-order logic (FOL) rules. The experimental results are essentially consistent with the experts' field interpretation, which demonstrate the feasibility and accuracy of the proposed approach. The results also show that the scheme has a good generality on diverse data sources.
ABSTRACT:Change of globe surface height is an important factor to study human living environment. The Geoscience Laser Altimeter System (GLAS) on ICESat is the first laser-ranging instrument for continuous global observations of the Earth. In order to have a comprehensive understanding of full-waveform laser altimeter, this study simulated the operating mode of ICESat and modeled different terrains' (platform terrain, slope terrain, and artificial terrain) echo waveforms based on the radar equation. By changing the characteristics of the system and the targets, numerical echo waveforms can be achieved. Hereafter, we mainly discussed the factors affecting the amplitude and size (width) of the echoes. The experimental results implied that the slope of the terrain, backscattering coefficient and reflectivity, target height, target position in the footprint and area reacted with the pulse all can affect the energy distribution of the echo waveform and the receiving time. Finally, Gaussian decomposition is utilized to decompose the echo waveform. From the experiment, it can be noted that the factors which can affect the echo waveform and by this way we can know more about large footprint full-waveform satellite laser altimeter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.