Age determination is the basis of determining the postmortem interval using necrophagous fly larvae. To explore the potential of using cuticular hydrocarbons for determining the ages of fly larvae, changes of cuticular hydrocarbons in developing larvae of Chrysomya rufifacies (Macquart) (Diptera: Calliphoridae) were investigated using gas chromatography with flame-ionization detection and gas chromatography-mass spectrometry. This study showed that the larvae produced cuticular hydrocarbons typical of insects. Most of the hydrocarbons identified were alkanes with the carbon chain length of 21-31, plus six kinds of alkenes. The hydrocarbon composition of the larvae correlated with age. The statistical results showed that simple peak ratios of n-C29 divided by another eight selected peaks increased significantly with age; their relationships with age could be modelled using exponential or power functions with R(2) close to or > 0.80. These results suggest that cuticular hydrocarbon composition is a useful indicator for determining the age of larval C. rufifacies, especially for post-feeding larvae, which are difficult to differentiate by morphology.
Determination of the postmortem interval (PMI) is crucial for investigating homicide. However, there are currently only limited methods available. Especially, once the PMI exceeds the duration of pre-adult development of the flies with the adult emergence, its determination is very approximate. Herein, we report the regular changes in hydrocarbon composition during the weathering process of the puparia in the field in Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae), one of the common species of necrophagous flies. Correlation analysis showed that the relative abundance of nearly all of the branched alkanes and alkenes decreased significantly with the weathering time. Especially, for 9 of the peaks, over 88% of the variance in their abundance was explained by weathering time. Further analysis indicated that the regular changes caused mainly by the different weathering rates of various hydrocarbons. Additionally, the weathering rates were found to depend on the chemical structure and molecular weight of the hydrocarbons. These results indicate strongly that hydrocarbon analysis is a powerful tool for determining the weathering time of the necrophagous fly puparia, and is expected to markedly improve the determination of the late PMI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.