Batch tests were conducted to know the effectiveness of using surfactants only and surfactants with a complexing agent to remove Cu (II) and Zn (II) from an artificially contaminated sandy soil. SDS (sodium dodecyl sulfate), AOT (alpha-olefin sulfonate) and Tx-100 (Triton X-100) were the surfactants selected as the washing liquids. Complexing agent EDTA (ethylenediaminetetraacetic acid) was also selected for washing the soil. To avoid external factors from interfering with the cleaning process, artificial soil formed by a mixture of clean sand and bentonite was used to form contaminated soil samples. The amount of organic matter present was insignificant. Compared to extraction by distilled water, tests indicated that a six-fold increase in copper extraction occurred due to the presence of surfactants and/or the complexing agent EDTA. Compared to extraction by distilled water, zinc extraction by surfactants and or the complexing agent EDTA was nearly 1.2 to 1.3 times more. Effects of competition as well as interference associated with the adsorption and desorption of these metals are also very briefly reported.
A combination of DAM-SCN(-) third phase extraction and inductively coupled plasma emission spectrometry (ICP-AES) is used for the determination of trace metal ions in a river water and a seawater reference material. An implementation of the third phase extraction prior to ICP-AES allows a preconcentration of trace elements (Co, Cu, Mn, Fe, V, Ti, Mn) by a factor ranging from 33 to 45. A complete separation of these elements is accomplished from matrices, normally affecting the excitation characteristics of ICP and suppressing the elemental signals severely. Different factors, including pH of the solutions, amounts of reagents, matrix effects, have been investigated and optimized. Under the conditions selected, the limits of determination have been in the range of 0.02 to 0.6 microg/L. The system has been successfully applied to the determination of Cu, Mn, V in the reference river water SLRS-3 and Mo in the reference seawater NASS-3. The results were in a good agreement with the certified values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.