We study here the underlying factors that govern the stability of austenite in a medium Mn (Fe–0.18C–11Mn–3.8Al) (wt-%) steel. In this regard, a novel heat treatment involving intercritical quenching and tempering was designed to obtain high total elongation (TEL) and high ultimate tensile strength (UTS) in the cold-rolled steel. And the UTS and TEL approached 920–1150 MPa and 35–65%, respectively. The product of TEL and UTS (PSE) exceeded 40 GPa%, with a maximum value of 60 GPa%. A detailed analysis of microstructure before and after tensile deformation revealed that the TRIP effect occurred and the stability of austenite was predominantly governed by the grain sizes of austenite rather than the orientation of austenite grains. The theoretical analysis of work hardening data suggested that the superior elongation of medium Mn TRIP steel is related to the high stability of austenite and the cooperative deformation of ferrite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.