Model systems for oral cancer research have progressed from tumor epithelial cell cultures to in vivo systems that mimic oral cancer genetics, pathological characteristics, and tumor-stroma interactions of oral cancer patients. In the era of cancer immunotherapy, it is imperative to use model systems to test oral cancer prevention and therapeutic interventions in the presence of an immune system and to discover mechanisms of stromal contributions to oral cancer carcinogenesis. Here, we review in vivo mouse model systems commonly used for studying oral cancer and discuss the impact these models are having in advancing basic mechanisms, chemoprevention, and therapeutic intervention of oral cancer while highlighting recent discoveries concerning the role of immune cells in oral cancer. Improvements to in vivo model systems that highly recapitulate human oral cancer hold the key to identifying features of oral cancer initiation, progression, and invasion as well as molecular and cellular targets for prevention, therapeutic response, and immunotherapy development.
Oral cancers, primarily squamous cell carcinomas (SCCs), progress either slowly or aggressively. Here we assessed the role of macrophages in SCC behavior. We used mouse SCC cells derived from tumors harboring a KrasG12D activation mutation and Smad4 deletion in keratin 15–positive stem cells and a human oral SCC cell line, FaDu, which has NRAS amplification and SMAD4 deletion. SCC cells were transplanted into immune-compromised or immune-competent (syngeneic) recipients. After tumors were established, we used clodronate liposomes to ablate macrophages. We found that the number of tumor-associated macrophages (TAMs) was not affected by the presence of T cells but differed considerably among tumors derived from different SCC lines. Clodronate significantly reduced TAMs and splenic macrophages, resulting in reduced SCC volumes. Tumors with clodronate treatment did not show decreased proliferation but did exhibit increased apoptosis and reduced vascular density. FLIP (Fas-associated via death domain-like interleukin 1β–converting enzyme inhibitory protein), an apoptosis inhibitor abundantly produced in tumor cells and TAMs, was reduced in tumor cells of clodronate-treated mice. Reduced FLIP levels correlated with reductions in phosphorylated nuclear NFκB p65 and NFκB inhibitor attenuated FLIP protein levels in SCC cells. Furthermore, TGFβ1 serum levels and pSmad3 were reduced in clodronate-treated mice, but their reductions were insufficient to reverse epithelial-mesenchymal transition or TGFβ-mediated angiogenesis in endothelial cells. Consequently, metastasis was not significantly reduced by macrophage reduction. However, reduced pSmad3 correlated with reduction of its transcriptional target, vascular endothelial growth factor A, in clodronate-treated tumor cells, which correlated with reduced vascular density in clodronate-treated tumors. Taken together, our study revealed that macrophages contribute to SCC expansion through interactions with tumor cells but are dispensable for SCC metastasis. Our study provides novel insights into understanding the contributions and limitations of TAMs in SCC progression.
Head and neck squamous cell carcinoma (HNSCC) is the most common form of head and neck cancer. Annually, more than half a million individuals are diagnosed with this devastating disease, with increasing incidence in Europe and Southeast Asia. The diagnosis of HNSCC often occurs in late stages of the disease and is characterized by manifestation of a high-grade primary tumor and/or lymph node metastasis, precluding timely management of this deadly cancer. Recently, HNSCC cancer stem cells have emerged as an important factor for cancer initiation and maintenance of tumor bulk. Like normal stem cells, cancer stem cells can undergo self-renewal and differentiation. This unique trait allows for maintenance of the cancer stem cell pool and facilitates differentiation into heterogeneous neoplastic progeny when necessary. Recent studies have suggested coexistence of different cancer stem cell populations within a tumor mass, where the tumor initiation and metastasis properties of these cancer stem cells can be uncoupled. Cancer stem cells also possess resistant phenotypes that evade standard chemotherapy and radiotherapy, resulting in tumor relapse. Therefore, understanding distinctive pathways relating to cancer stem cells will provide insight into early diagnosis and treatment of HNSCC. In this review, we highlight current advances in identifying cancer stem cells, detail the interactions of these cells with the immune system within the tumor niche, and discuss the potential use of immunotherapy in managing HNSCC.Keywords: flow cytometry, tumor microenvironment, squamous cell carcinoma of the head and neck, neoplastic stem cells, tumor immunology, metastasis
Cathelicidin is a host defense peptide with multiple innate immunity-related functions. Recent findings indicate that cathelicidin is frequently dysregulated in human cancers where it plays a paradoxical yet dominant role in the regulation of tumor malignancy. In this review, the regulation of malignant phenotypes by cathelicidin in relation to the activation of its receptors and intracellular signaling is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.