Based on archival Chandra observations with a total exposure of 1.3 Ms, we study Xray point sources in the Fornax cluster of galaxies, with the primary aim of searching for intra-cluster X-ray source populations. We detect 1177 point sources out to a projected radius of ∼30 arcmin (∼180 kpc) from the cluster center and down to a limiting 0.5-8 keV luminosity of ∼ 3 × 10 37 erg s −1 . We construct source surface density profile, after excluding sources associated with foreground stars, known globular clusters, ultracompact dwarfs and galactic nuclei. From this profile we statistically identify ∼183 excess sources that are not associated with the bulk stellar content of the individual member galaxies of Fornax, nor with the cosmic X-ray background. Taking into account Poisson error and cosmic variance, the cumulative significance of this excess is at 2 σ level (with a maximum of 3.6 σ) outside three effective radii of the central giant elliptical, NGC 1399. The luminosity function of the excess sources is found to be Corresponding author: Zhiyuan Li xiangyu.jin@mail.mcgill.ca, lizy@nju.edu.cn 2 Jin et al.significantly steeper than that of the GC-hosting sources (presumably low-mass Xray binaries [LMXBs]), disfavoring the possibility that unidentified GCs are primarily responsible for the excess. We show that a large fraction of the excess can be related to the extended stellar halo of NGC 1399 and/or the diffuse intra-cluster light, thus providing strong evidence for the presence of intra-cluster X-ray sources in Fornax, the second unambiguous case for a galaxy cluster after Virgo. Other possible origins of the excess, including supernova-kicked LMXBs and stripped nucleated dwarf galaxies are discussed.
Quenching of star-formation has been identified in many starburst and post-starburst galaxies, indicating burst-like star-formation histories (SFH) in the primordial Universe. Galaxies undergoing violent episodes of star-formation are expected to be rich in high energy cosmic rays (CRs). We have investigated the role of these CRs in such environments, particularly how they could contribute to this burst-like SFH via quenching and feedback. These high energy particles interact with the baryon and radiation fields of their host via hadronic processes to produce secondary leptons. The secondary particles then also interact with ambient radiation fields to generate X-rays through inverse-Compton scattering. In addition, they can thermalise directly with the semi-ionised medium via Coulomb processes. Heating at a rate of " 10´2 5 erg cm´3 s´1 can be attained by Coulomb processes in a star-forming galaxy with one core-collapse SN event per decade, and this is sufficient to cause quenching of star-formation. At high-redshift, a substantial amount of CR secondary electron energy can be diverted into inverse-Compton X-ray emission. This yields an X-ray luminosity of above 10 41 erg s´1 by redshift z " 7 which drives a further heating effect, operating over larger scales. This would be able to halt inflowing cold gas filaments, strangulating subsequent star-formation. We selected a sample of 16 starburst and post-starburst galaxies at 7 À z À 9 and determine the star-formation rates they could have sustained. We applied a model with CR injection, propagation and heating to calculate energy deposition rates in these 16 sources. Our calculations show that CR feedback cannot be neglected as it has the strength to suppress star-formation in these systems. We also show that their currently observed quiescence is consistent with the suffocation of cold inflows, probably by a combination of X-ray and CR heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.