The transport and magnetic properties of 10 wt % malic acid and 5 wt % nanocarbon doped MgB2 have been studied by measuring the resistivity (ρ), critical current density (jc), connectivity factor (AF), irreversibility field (Hirr), and upper critical field (Hc2). The pinning mechanisms are studied in terms of the collective pinning model. It was found that both mean free path (δl) and critical temperature (δTc) pinning mechanisms coexist in both doped MgB2. For both the malic acid and nanocarbon doped samples, the temperature dependence of the crossover field, which separates the single vortex and the small bundle pinning regime, Bsb(T), shows that the δl pinning mechanism is dominant for temperatures up to t(T/Tc)=0.7 but the δTc pinning mechanism is dominant for t>0.7. This tendency of coexistence of the δl and the δTc pinning mechanism is in strong contrast with the pure MgB2, in which the δTc pinning mechanism is dominant over a wide temperature range below Tc. It was also observed that the connectivity factor, active cross-sectional area fraction (AF), are 0.11 and 0.14 for the nanocarbon and the malic acid doped MgB2, respectively, indicating that there are still rooms for further improving jc performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.