Although naphthenic acid corrosion (NAC) has been studied for many years, the mechanism of NAC is not fully understood. The objective of this paper is to study high-temperature NAC in secondary vacuum gas oil of an industrial crude oil vacuum distillation tower. A hightemperature autoclave was applied to conduct high-temperature corrosion test to investigate NAC behaviour of carbon steel and Cr5Mo low alloy steel at different sulphur contents and total acid numbers (TAN). The result shows that the corrosion rate of carbon steel and low alloy steel is high at low TAN and high TAN while it keeps at a low value at medium TAN. Corrosion product film on Cr5Mo low alloy steel surface is denser and more compact than that of carbon steel at high TAN. The chromium present in Cr5Mo low alloy steel plays an important role in NAC resistance by the formation of Cr 7 S 8 film in the inner layer of the scale. Corrosion rates of the two steels in secondary vacuum gas oil are high at low TAN and high TAN, but low at medium TAN which are strange and different from previous experimental results conducted in non-industrial oil solution. A tentative explanation for this new phenomenon is also put forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.