Aero-engines usually contain a lot of pipes and cables which have an important influence on product performance and reliability. In this paper, a new pipe routing approach for aero-engines is proposed. First, an adaptive octree modeling method is presented according to the characteristics of the layout space. After considering three types of engineering constraints, the total length of pipelines, the total number of bends and the natural frequency of pipelines are modeled as the optimal objective. Then, a Modified Max-Min Ant System optimization algorithm (MMMAS), which uses layered node selection and dynamic update mechanism, is proposed for pipe routing. For branch pipelines, ant colony searches in groups and parallel to improve the solution quality and speed up the convergence greatly. Finally, numerical comparisons with other current approaches in literatures demonstrate the efficiency and effectiveness of the proposed approach. And a case study of pipe routing for aero-engines is conducted to validate this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.