Peptide drugs are an exciting class of pharmaceuticals for the treatment of a variety of diseases; however, their short half-life dictates multiple and frequent injections causing undesirable side-effects. Herein, we describe a novel peptide delivery system that seeks to combine the attractive features of prolonged circulation time with a prolonged release formulation. This system consists of glucagon-like peptide-1, a type-2 diabetes drug fused to a thermally responsive, elastin-like-polypeptide (ELP) that undergoes a soluble-insoluble phase transition between room temperature and body temperature, thereby forming an injectable depot. We synthesized a set of GLP-1-ELP fusions and verified their proteolytic stability and potency in vitro. Significantly, a single injection of depot forming GLP-1-ELP fusions reduced blood glucose levels in mice for up to 5 days, 120 times longer than an injection of the native peptide. These findings demonstrate the unique advantages of using ELPs to release peptide-ELP fusions from a depot combined with enhanced systemic circulation to create a tunable peptide delivery system.
Improper chromosome attachment to the spindle can lead to daughter cells with missing or extra chromosomes. Such mishaps are avoided in many cells by a checkpoint that detects even a single improperly attached chromosome. What is detected? A misattached chromosome is not under tension from opposed mitotic forces, and in praying mantid spermatocytes, direct experiments show that the absence of tension is what the checkpoint detects. How is the absence of tension detected? Tension-sensitive kinetochore protein phosphorylation is the most likely possibility. We combined micromanipulation with immunostaining for phosphoproteins in order to study the effect of tension on kinetochore phosphorylation in mantid spermatocytes. We confirm earlier observations on mammalian cells and grasshopper spermatocytes that misattached chromosomes have phosphorylated kinetochore proteins. We also confirm experiments in grasshopper spermatocytes showing that tension alters kinetochore chemistry: tension from a micromanipulation needle causes kinetochore protein dephosphorylation, and relaxation of tension causes kinetochore protein rephosphorylation. Beyond confirmation, our results provide fresh evidence for phosphorylation as the signal to the checkpoint. First, mantid cells are the only ones in which an effect of tension on the checkpoint has been directly demonstrated; by equally direct experiments, we now show that tension affects kinetochore phosphorylation in these same cells. Second, sex chromosome behavior in mantids provides a natural experiment to test the relationship between phosphorylation and the checkpoint. In grasshoppers, an unpaired sex chromosome is normal, its kinetochore is under-phosphorylated, and the checkpoint is not activated. In mantids, exactly the opposite is true: an unpaired sex chromosome is abnormal, its kinetochore is phosphorylated and, as predicted, the checkpoint is activated. We conclude that tension-sensitive kinetochore protein phosphorylation very likely is the essential link between proper chromosome attachment and the check-point, the link that permits potential errors in chromosome distribution to be detected and avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.