The Spt/Ada-Gcn5 Acetyltransferase (SAGA) coactivator complex has multiple modules with different enzymatic and non-enzymatic functions. How each module contributes to gene activation in specific biological contexts is not well understood. Here we analyzed the role of the non-enzymatic core module during Drosophila oogenesis. We show that depletion of several SAGA-specific subunits belonging to the core module blocked egg chamber development during mid-oogenesis stages, resulting in stronger phenotypes than those obtained after depletion of SAGA’s histone acetyltransferase module or deubiquitination module. These results, as well as additional genetic analyses pointing to an interaction with TBP, suggested a differential role of SAGA modules at different promoter types. However, SAGA subunits co-occupied all promoter types of active genes in ChIP-seq and ChIP-nexus experiments. Thus, the SAGA complex appears to occupy promoters in its entirety, consistent with the strong biochemical integrity of the complex. The high-resolution genomic binding profiles are congruent with SAGA recruitment by activators upstream of the start site, and retention on chromatin by interactions with modified histones downstream of the start site. The stronger genetic requirement of the core module during oogenesis may therefore be explained through its interaction with TBP or its role in recruiting the enzymatic modules to the promoter. We propose the handyman principle, which posits that a distinct genetic requirement for specific components may conceal the fact that the entire complex is physically present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.