Although surgery remains the mainstay of curative treatment for colorectal cancer (CRC), many patients still have high chance to experience disease relapse. It is therefore imperative to identify prognostic markers that can help predict the clinical outcomes of CRC. Aberrant microRNA expression holds great potential as diagnostic and prognostic biomarker for CRC. Here we aimed to investigate clinical potential of miR-34a-5p as a prognostic marker for CRC recurrence and its functional significance. First, we validated that miR-34a-5p was downregulated in CRC tumour tissues (P<0.05). The expression level of tissue miR-34a-5p was then evaluated in two independent cohorts of 268 CRC patients. miR-34a-5p expression was positively correlated with disease-free survival in two independent cohorts (cohort I: n=205, P<0.001; cohort II: n=63, P=0.006). Moreover, the expression of miR-34a-5p was an independent prognostic factor for CRC recurrence by multivariate analysis (P<0.001 for cohort I, P=0.007 for cohort II). Ectopic expression of miR-34a-5p in p53 wild-type colon cancer cell HCT116 significantly inhibited cell growth, migration, invasion and metastasis. miR-34a-5p induced cell apoptosis, cell cycle arrest at G1 phase and p53 transcription activity in HCT116 cells, but not in the HCT116 p53 knockout (p53(-/-)) cells. miR-34a-5p significantly suppressed the HCT116 growth in vivo, whereas it showed no effect on the HCT116 p53(-/-) xenograft, indicating that the growth-inhibiting effect by miR-34a-5p was dependent on p53. In addition, the expression level of miR-34a-5p in patients with p53-positive expression was higher than that in patients with p53-negative expression (P<0.01). In conclusion, miR-34a-5p inhibits recurrence of CRC through inhibiting cell growth, migration and invasion, inducing cell apoptosis and cell cycle arrest in a p53-dependent manner.
AimsTo test the hypothesis that delivery of integrated care augmented by a web‐based disease management programme and nurse coordinator would improve treatment target attainment and health‐related behaviour.MethodsThe web‐based Joint Asia Diabetes Evaluation (JADE) and Diabetes Monitoring Database (DIAMOND) portals contain identical built‐in protocols to integrate structured assessment, risk stratification, personalized reporting and decision support. The JADE portal contains an additional module to facilitate structured follow‐up visits. Between January 2009 and September 2010, 3586 Chinese patients with Type 2 diabetes from six sites in China were randomized to DIAMOND (n = 1728) or JADE, plus nurse‐coordinated follow‐up visits (n = 1858) with comprehensive assessments at baseline and 12 months. The primary outcome was proportion of patients achieving ≥ 2 treatment targets (HbA1c < 53 mmol/mol (7%), blood pressure < 130/80 mmHg and LDL cholesterol < 2.6 mmol/l).ResultsOf 3586 participants enrolled (mean age 57 years, 54% men, median disease duration 5 years), 2559 returned for repeat assessment after a median (interquartile range) follow‐up of 12.5 (4.6) months. The proportion of participants attaining ≥ 2 treatment targets increased in both groups (JADE 40.6 to 50.0%; DIAMOND 38.2 to 50.8%) and there were similar absolute reductions in HbA1c [DIAMOND −8 mmol/mol vs JADE −7 mmol/mol (−0.69 vs −0.62%)] and LDL cholesterol (DIAMOND −0.32 mmol/l vs JADE −0.28 mmol/l), with no between‐group difference. The JADE group was more likely to self‐monitor blood glucose (50.5 vs 44.2%; P = 0.005) and had fewer defaulters (25.6 vs 32.0%; P < 0.001).ConclusionsIntegrated care augmented by information technology improved cardiometabolic control, with additional nurse contacts reducing the default rate and enhancing self‐care. (Clinical trials registry no.: NCT01274364)
Epidemiological studies showed that obesity and its related non-alcoholic fatty liver disease (NAFLD) promote hepatocellular carcinoma (HCC) development. We aimed to uncover the genetic alterations of NAFLD-HCC using whole-exome sequencing. We compared HCC development in genetically obese mice and dietary obese mice with wild-type lean mice fed a normal chow after treatment with diethylnitrosamine. HCC tumor and adjacent normal samples from obese and lean mice were then subjected to whole-exome sequencing. Functional and mechanistic importance of the identified mutations in Carboxyl ester lipase (Cel) gene and Harvey rat sarcoma virus oncogene 1 (Hras) was further elucidated. We demonstrated significantly higher incidences of HCC in both genetic and dietary obese mice with NAFLD development as compared with lean mice without NAFLD. The mutational signatures of NAFLD-HCC and lean HCC were distinct, with <3% overlapped. Eight metabolic or oncogenic pathways were found to be significantly enriched by mutated genes in NAFLD-HCC, but only two of these pathways were dysregulated by mutations in lean HCC. In particular, Cel was mutated significantly more frequently in NAFLD-HCC than in lean HCC. The multiple-site mutations in Cel are loss-of-function mutations, with effects similar to Cel knock-down. Mutant Cel caused accumulation of cholesteryl ester in liver cells, which led to induction of endoplasmic reticulum stress and consequently activated the IRE1α/c-Jun N-terminal kinase (JNK)/c-Jun/activating protein-1 (AP-1) signaling cascade to promote liver cell growth. In addition, single-site mutations in Hras at codon 61 were found in NAFLD-HCC but none in lean HCC. The gain-of-function mutations in Hras (Q61R and Q61K) significantly promoted liver cell growth through activating the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt pathways. In conclusion, we have identified mutation signature and pathways in NAFLD-associated HCC. Mutations in Cel and Hras have important roles in NAFLD-associated hepatocellular carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.