Effect of two-layer (In 0.04 Ga 0.96 N and In 0.08 Ga 0.92 N) staircase electron injector (SEI) on quantum efficiency of light-emitting-diodes (LEDs) in the context of active regions composed of single and quad 3 nm double heterostructures (DHs) is reported. The experiments were augmented with the first order model calculations of electron overflow percentile. Increasing the two-layer SEI thickness from 4 þ 4 nm up to 20 þ 20 nm substantially reduced, if not totally eliminated, the electron overflow in single DH LEDs at low injections without degrading the material quality evidenced by the high optical efficiency observed at 15 K and room temperature. The improvement in quad 3 nm DH LEDs with increasing SEI thickness is not so pronounced as the influence of SEI is less for thicker active regions, which in and of themselves necessarily thermalize the carriers. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.