Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO_{3}. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Abstract—Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia–reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1 h and reperfusion for 2 h with and without rapamycin (20 mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C14-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5 ± 0.8% control vs. 21.5 ± 0.9% rapamycin). We also found that ischemia–reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia–reperfusion.
Raman spectroscopy is applied to diagnose nanoparticle presence and characteristics in a gaseous flow field. Specifically, in situ monitoring of the Raman-active modes of TiO 2 and Al 2 O 3 nanoparticles in aerosol form is demonstrated in high-temperature flame environments. This technique serves as a sensitive and reliable way to characterize particle composition and crystallinity (e.g. anatase versus rutile) and delineate the phase conversion of nanoparticles as they evolve in the flow field. The effect of temperature on the solid-particle Raman spectra is investigated by seeding nanoparticles into a co-flow jet diffusion flame, where local gas-phase temperatures are correlated by shape-fitting the N 2 vibrational Stokes Q-branch Raman spectra. Applying the technique to a flame synthesis environment, the results demonstrate that in situ Raman of as-formed nanoparticles can be readily applied to other gas-phase synthesis systems, especially as an on-line diagnostic.
Perovskite nickelate heterostructure consisting of single unit cell of EuNiO3 and LaNiO3 have been grown on a set of single crystalline substrates by pulsed laser interval deposition to investigate the effect of epitaxial strain on electronic and magnetic properties at the extreme interface limit. Despite the variation of substrate inplane lattice constants and lattice symmetry, the structural response to heterostructuring is primarily controlled by the presence of EuNiO3 layer. In sharp contrast to bulk LaNiO3 or EuNiO3, the superlattices grown under tensile strains exhibit metal to insulator transition (MIT) below room temperature. The onset of magnetic and electronic transitions associated with the MIT can be further separated by application of large tensile strain. Furthermore, these transitions can be entirely suppressed by very small compressive strain. X-ray resonant absorption spectroscopy measurements reveal that such strain-controlled MIT is directly linked to strain induced self-doping effect without any chemical doping. arXiv:1807.00449v1 [cond-mat.str-el] 2 Jul 2018 * smiddey@iisc.ac.in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.