Thin films of Bi2Te3 and Sb2Te3 were synthesized by the nanoalloying approach, which has recently been proven to yield VVI compounds with good thermoelectric properties and has several advantages over conventional growth on hot substrates. Firstly, repeating layers of the elements Bi, Sb and Te with a thickness in the range between 0.2 nm and 2.4 nm were deposited on BaF2 (111) substrates in an MBE system at room temperature with different deposition patterns for different samples, i.e. in bilayer and quintuple stacks, with different starting layer thicknesses and different Te contents. Subsequently, the element layer stacks were annealed in order to induce crystallization and compound formation of Bi2Te3 and Sb2Te3 thin films. The annealed thin films were characterized using X-ray diff ractometry (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The transport properties, i.e. electrical conductivities, carrier concentrations, carrier mobilities, Seebeck coefficients and thermal conductivities, were determined at room temperature for several sets of starting layer thicknesses and deposition patterns depending on the Te content. The texture was found to be strongly influenced by the starting thicknesses of the elemental layers in the deposition pattern. Results of temperature dependent measurements of the Seebeck coefficient and electrical conductivity on one sample of nanoalloyed Bi2Te3 and Sb2Te3 together with results from temperature dependent in situ XRD investigations are presented
Roughly a decade ago an outstanding thermoelectric figure of merit ZT of 2.4 was reported for nanostructured Bi2Te3/Sb2Te3-based thin film superlattice (SL) structures. The published results strongly fueled and renewed the interest in the development of efficient novel nanostructured thermoelectric materials. This review article shall give an overview over the most recent theoretical and experimental advances on Bi2Te3/Sb2Te3 SLs and related superlattice systems. The presented theoretical models are subdivided into electronic and phononic aspects. The experimental results are summarized with regard to the method used. A more detailed elaboration on structural and transport properties is given in the subsequent sections
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.