Copper matrix composites were fabricated through mixing fixed amount of reduced graphene oxide and the different amounts of titanium. The dried copper/titanium/reduced graphene oxide mixture powders were firstly obtained by the wet‐mixing process, and then the spark plasma sintering process realized their faster densification. In the as‐sintered bulk composites, the layered reduced graphene oxide network, uniform titanium particles and copper‐titanium solid solution are observed in copper matrix. Investigations on mechanical properties show that the as‐prepared bulk composites exhibit the hardness and compressive yield strength compared with single reduced graphene oxide added composites. Increased titanium addition resulted into higher hardness and strength. The relevant formation and failure mechanisms of the composites and their influence on mechanical properties were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.