Interleukin (IL)-12 family cytokines play critical roles in autoimmune diseases. Our previous study has shown that IL-23p19 and Epstein-Barr virus-induced 3 (Ebi3) form a new IL-12 family heterodimer, IL-23p19/Ebi3, termed IL-39, and knock-down of p19 or Ebi3 reduced diseases by transferred GL7 B cells in lupus-prone mice. In the present study, we explore further the possible effect of IL-39 on murine lupus. We found that IL-39 in vitro and in vivo induces differentiation and/or expansion of neutrophils. GL7 B cells up-regulated neutrophils by secreting IL-39, whereas IL-39-deficient GL7 B cells lost the capacity to up-regulate neutrophils in lupus-prone mice and homozygous CD19 (CD19-deficient) mice. Finally, we found that IL-39-induced neutrophils had a positive feedback on IL-39 expression in activated B cells by secreting B cell activation factor (BAFF). Taken together, our results suggest that IL-39 induces differentiation and/or expansion of neutrophils in lupus-prone mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.