Image quality in 3-D optoacoustic (photoacoustic) tomography is greatly influenced by both the measurement system, in particular the number and spatial arrangement of ultrasound sensors, and the ability to account for the spatio-temporal response of the sensor element(s) in the reconstruction algorithm. Herein we present a reconstruction procedure based on the inversion of a time-domain forward model incorporating the spatial impulse response due to the shape of the transducer, which is subsequently applied in a tomographic system based on a translation-rotation scan of a linear detector array. The proposed method was also adapted to cope with the data-intensive requirements of high-resolution volumetric optoacoustic imaging. The processing of 2 · 10 (4) individual signals resulted in well-resolved images of both ~ 200 μm absorbers in phantoms and complex vascular structures in biological tissue. The results reported herein demonstrate that the introduced model-based methodology exhibits a better contrast and resolution than standard back-projection and model-based algorithms that assume point detectors. Moreover, the capability of handling large datasets anticipates that model-based methods incorporating the sensor properties can become standard practice in volumetric opto acoustic image formation.
This paper describes a technique that numerically reconstructs the complex acoustic amplitude (i.e. the acoustic amplitude and phase) of a compression acoustic wave in the interior volume of a specimen from a set of full-field optical measurements of the instantaneous displacement of the surface. The volume of a thick specimen is probed in transmission mode by short bursts of narrowband compression acoustic waves generated at one of its faces. The temporal evolution of the displacement field induced by the bursts emerging at the opposite surface is measured by pulsed digital holographic interferometry (pulsed TV holography). A spatio-temporal 3D Fourier transform processing of the measured data yields the complex acoustic amplitude at the plane of the surface as a sequence of 2D complex-valued maps. Finally, a numerical implementation of the Rayleigh–Sommerfeld diffraction formula is employed to reconstruct the complex acoustic amplitude at other planes in the interior volume of the specimen. The whole procedure can be regarded as a combination of optical digital holography and acoustical holography methods. The technique was successfully tested on aluminium specimens with and without an internal artificial defect and sample results are presented. In particular, information about the shape and position of the defect was retrieved in the experiment performed on the flawed specimen, which indicates the potential applicability of the technique for the nondestructive testing of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.