SUMMARYSeismic building codes include design provisions to account for the torsional effects arising in torsionally unbalanced (asymmetric) buildings. These provisions are based on two alternative analytical procedures for determining the design load for the individual resisting structural elements. A previous study has shown that the linear elastic modal analysis procedure may not lead to conservative designs, even for multistorey buildings with regular asymmetry, when such structures are excited well into the inelastic range of response. The equivalent static force procedure as recommended by codes may also be deficient in accounting for additional ductility demand in the critical stiff-edge elements. This paper addresses the non-conservatism of existing static torsional provisions and examines aspects of element strength distribution and its influence on inelastic torsional effects. A recommendation is made for improving the effectiveness of the code-type static force procedure for torsionally unbalanced multistorey frame buildings with regular asymmetry, leading to a design approach which estimates conservatively the peak ductility demand of edge elements on both sides of the building. The modified approach also retains the simplicity of existing code provisions and results in acceptable levels of additional lateral design strength. It has recently been adopted by the new Australian earthquake code, which is due to be implemented early in 1993.
SUMMARYThis paper addresses some key issues which have been the subject of dispute in recent years in studying the seismic torsional response of asymmetric structures. These issues include the interpretation of the code accidental torsional provision, and the influence of the force reduction factor and of the uncoupled lateral period, on the torsional response of asymmetric structures. The responses of single-storey torsionally unbalanced structural models, designed in accordance with the torsional provisions of seismic building codes in Europe, the United States and Canada, and subjected to seismic ground motions corresponding to both the serviceability and ultimate limit states, are studied analytically. On the basis of a better understanding of the above issues as achieved in this study, the performance of code-designed torsionally unbalanced structures for both limit states is assessed.
SUMMARYThis paper presents results of an analytical study of the inelastic earthquake torsional response of a class of setback frame buildings. In the first part of the study, the modal response spectrum analysis procedure is utilized to determine the yielding strengths of structural members in an idealized but representative setback frame building model. Results are then presented for the inelastic dynamic response of this setback building model subjected to an ensemble of six earthquake ground motions. The results indicate that the modal response spectrum analysis procedure is inadequate for preventing excessive response leading to concentration of damage in vulnerable structural members, such as those in the tower near the notch and those in the base (the part of the structure below the tower) near the perimeter at the opposite side of the tower. The second part of the study develops a modified equivalent static force procedure for strength design of such setback frame buildings. Response analyses show that the proposed procedure results in improved and satisfactory inelastic performance of the selected class of setback frame buildings, having a wide range of realistic configurations.
SUMMARYThis paper addresses some fundamentally contradictory conclusions drawn by Tso and Ying' and the authors' regarding the additional seismic ductility demand in asymmetric building structures and the adequacy of certain code torsional provisions. It also clarifies a number of issues arising from the different approaches employed in the two studies. The Mexico 76 and 87 code torsional provisions are taken as examples. Results show that the structural element at the stiff edge is the more critical and that the Mexico 76 code torsional provisions (among others) are inadequate, substantially underestimating the strength demand of this element. On the other hand, the Mexico 87 code torsional provisions are found to be over-conservative. Recommendations are also given for improving the form and effectiveness of these code torsional provisions.
SUMMARYBased on an asymmetric multistorey frame building model, this paper investigates the influence of a building's higher vibration modes on its inelastic torsional response and evaluates the adequacy of the provisions of current seismic building codes and the modal analysis procedure in accounting for increased ductility demand in frames situated at or near the stiff edge of such buildings. It is concluded that the influence of higher vibration modes on the response of the upper-storey columns of stiff-edge frames increases significantly with the building's fundamental uncoupled lateral period and the magnitude of the stiffness eccentricity. The application of the equivalent static torsional provisions of certain building codes may lead to non-conservative estimates of the peak ductility demand, particularly for structures with large stiffness eccentricity. In these cases, the critical elements are vulnerable to excessive additional ductility demand and, hence, may be subject to significantly more severe structural damage than in corresponding symmetric buildings. It is found that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed using linear elastic modal analysis theory. Particular caution is required when applying this method to the design of stiff-edge frame elements in highly asymmetric structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.