Improved electrocatalysts for the oxygen reduction reaction (ORR) are critical for the advancement of fuel cell technologies. Herein, we report a series of 11 soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s–1 to an unprecedented value of 2.2 × 106 s–1. These TOFs correlate with the ORR overpotential, which can be modulated by changing the E1/2 of the catalyst using different ancillary ligands, by changing the solvent and solution acidity, and by changing the catalyst’s protonation state. The overpotential is well-defined for these homogeneous electrocatalysts by the E1/2 of the catalyst and the proton activity of the solution. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of high overpotential. The correlation with overpotential is surprising since the turnover limiting steps involve oxygen binding and protonation, as opposed to turnover limiting electron transfer commonly found in Tafel analysis of heterogeneous ORR materials. Computational studies show that the free energies for oxygen binding to the catalyst and for protonation of the superoxide complex are in general linearly related to the catalyst E1/2, and that this is the origin of the overpotential correlations. This analysis thus provides detailed understanding of the ORR barriers. The best catalysts involve partial decoupling of the influence of the second coordination sphere from the properties of the metal center, which is suggested as new molecular design strategy to avoid the limitations of the traditional scaling relationships for these catalysts.
Metalloporphyrins are a class of versatile catalysts with the capability to functionalize saturated C-H bonds via several well-defined atom/group transfer processes, including oxene, nitrene, and carbene C-H insertions. The corresponding hydroxylation, amination, and alkylation reactions provide direct approaches for the catalytic conversion of abundant hydrocarbons into value-added functional molecules through C-O, C-N, and C-C bond formations, respectively. This tutorial review describes metalloporphyrin-based catalytic systems for the functionalization of different types of sp(3) C-H bonds, both inter- and intramolecularly, including challenging primary C-H bonds. Additional features of metalloporphyrin-catalyzed C-H functionalization include unusual selectivities and high turnover numbers.
The mechanism of cobalt(II)-porphyrin-mediated cyclopropanation of olefins with diazoesters was studied. The first step--reaction of cobalt(II)-porphyrin with ethyl diazoacetate (EDA)--was examined using EPR and ESI-MS techniques. EDA reacts with cobalt(II)-porphyrin to form a 1:1 Co(por)(CHCOOEt) adduct that exists as two isomers: the 'bridging carbene' C' in which the 'carbene' is bound to the metal and the pyrrolic nitrogen of the porphyrin that has a d(7) configuration on the metal, and the 'terminal carbene' C in which the 'carbene' behaves as a redox noninnocent ligand having a d(6) cobalt center and the unpaired electron residing on the 'carbene' carbon atom. The subsequent reactivities of the thus formed 'cobalt carbene radical' with propene, styrene, and methyl acrylate were studied using DFT calculations. The calculations suggest that the formation of the carbene is the rate-limiting step for the unfunctionalized Co(II)(por) and that the cyclopropane ring formation proceeds via a stepwise radical process: Radical addition of the 'carbene radical' C to the C=C double bonds of the olefins results in formation of the gamma-alkyl radical intermediates D. Species D then easily collapse in almost barrierless ring-closure reactions (TS3) to form the cyclopropanes. This radical mechanism readily explains the high activity of Co(II)(por) species in the cyclopropanation of electron-deficient olefins such as methyl acrylate.
A catalyst system for the preparation of biaryls containing four ortho substituents via Suzuki coupling is described. The combination of a catalytic quantity of Pd2(dba)3 with either an electron-rich biarylphosphine or DPEPhos is effective using a wide range of substrates. The X-ray crystal structure of (dba)Pd(2-(9-phenanthryl)phenyl-dicyclohexylphosphine), in which the Pd is coordinated to the 9,10-double bond of the phenanthryl group, is also reported.
The mechanism of cobalt(II) porphyrin-catalyzed benzylic C-H bond amination of ethylbenzene, toluene, and 1,2,3,4-tetrahydronaphthalene (tetralin) using a series of different organic azides [N(3)C(O)OMe, N(3)SO(2)Ph, N(3)C(O)Ph, and N(3)P(O)(OMe)(2)] as nitrene sources was studied by means of density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) spectroscopy. The DFT computational study revealed a stepwise radical process involving coordination of the azide to the metal center followed by elimination of dinitrogen to produce unusual "nitrene radical" intermediates (por)Co(III)-N(•)Y (4) [Y = -C(O)OMe, -SO(2)Ph, -C(O)Ph, -P(O)(OMe)(2)]. Formation of these nitrene radical ligand complexes is exothermic, predicting that the nitrene radical ligand complexes should be detectable species in the absence of other reacting substrates. In good agreement with the DFT calculations, isotropic solution EPR signals with g values characteristic of ligand-based radicals were detected experimentally from (por)Co complexes in the presence of excess organic azide in benzene. They are best described as nitrene radical anion ligand complexes (por)Co(III)-N(•)Y, which have their unpaired spin density located almost entirely on the nitrogen atom of the nitrene moiety. These key cobalt(III)-nitrene radical intermediates readily abstract a hydrogen atom from a benzylic position of the organic substrate to form the intermediate species 5, which are close-contact pairs of the thus-formed organic radicals R'(•) and the cobalt(III)-amido complexes (por)Co(III)-NHY ({R'(•)···(por)Co(III)-NHY}). These close-contact pairs readily collapse in a virtually barrierless fashion (via transition state TS3) to produce the cobalt(II)-amine complexes (por)Co(II)-NHYR', which dissociate to afford the desired amine products NHYR' (6) with regeneration of the (por)Co catalyst. Alternatively, the close-contact pairs {R'(•)···(por)Co(III)-NHY} 5 may undergo β-hydrogen-atom abstraction from the benzylic radical R'(•) by (por)Co(III)-NHY (via TS4) to form the corresponding olefin and (por)Co(III)-NH(2)Y, which dissociates to give Y-NH(2). This process for the formation of olefin and Y-NH(2) byproducts is also essentially barrierless and should compete with the collapse of 5 via TS3 to form the desired amine product. Alternative processes leading to the formation of side products and the influence of different porphyrin ligands with varying electronic properties on the catalytic activity of the cobalt(II) complexes have also been investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.