ABSTRACT. In higher plants, the transcription factor MYB10 is an important regulator of anthocyanin biosynthesis. In order to study its role in the development of red coloration in peach leaves, the full-length MYB10 complementary DNA sequence of the red-leaf peach cultivar 'Tsukuba No. 5' (Prunus persica f. atropurpurea) was successfully cloned using reverse transcription-polymerase chain reaction. The sequence was assigned the GenBank accession No. KP315904. Bioinformatic analysis identified the complete MYB10 open reading frame, consisting of 678 bp encoding 225 amino acids. The predicted protein has a molecular weight of 26.56 kDa and a theoretical isoelectric point of 8.97. The secondary structure was found to comprise approximately 34.22% alpha helix, 15.11% extended strand, 10.67% beta turn, and 40% random coil. Subcellular analysis indicated that MYB10 may function in the cytoplasm. Assessment of the amino acid sequence suggested the presence of one serine and two threonine phosphorylation sites. Quantitative real-time polymerase chain reaction revealed that MYB10 expression positively correlated with anthocyanin content in red-leaf peach, indicating that this transcription factor plays a role in the biosynthesis of this pigment in peach trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.