We propose a new approach based on an all-optical set-up for generating relativistic polarized electron beams via vortex Laguerre-Gaussian (LG) laser-driven wakefield acceleration. Using a pre-polarized gas target, we find that the topology of the vortex wakefield resolves the depolarization issue of the injected electrons. In full three-dimensional particle-in-cell simulations, incorporating the spin dynamics via the Thomas-Bargmann Michel Telegdi equation, the LG laser preserves the electron spin polarization by more than 80% while assuring efficient electron injection. The method releases the limit on beam flux for polarized electron acceleration and promises more than an order of magnitude boost in peak flux, as compared to Gaussian beams. These results suggest a promising table-top method to produce energetic polarized electron beams.
We report on experimental studies of divergence of proton beams from nanometer thick diamond-like carbon foils irradiated by a linearly polarized intense laser with high contrast. Proton beams with extremely small divergence (half angle) of 2° are observed in addition with a remarkably well-collimated feature over the whole energy range, showing one order of magnitude reduction of the divergence angle in comparison to the results from μm thick targets. Similar features are reproduced in two-dimensional particle-in-cell simulations with parameters representing our experiments, indicating a strong influence from the electron density distribution on the divergence of protons. Our comprehensive experimental study reveals grand opportunities for using nm foils in experiments that require high ion flux and small divergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.